69 research outputs found

    Odor impact of volatiles emitted from marijuana, cocaine, heroin and their surrogate scents

    Get PDF
    Volatile compounds emitted into headspace from illicit street drugs have been identified, but until now odor impact of these compounds have not been reported. Data in support of identification of these compounds and their odor impact to human nose are presented. In addition, data is reported on odor detection thresholds for canines highlighting differences with human ODTs and needs to address gaps in knowledge. New data presented here include: (1) compound identification, (2) gas chromatography (GC) column retention times, (3) mass spectral data, (4) odor descriptors from 2 databases, (5) human odor detection thresholds from 2 databases, (6) calculated odor activity values, and (7) subsequent ranking of compounds by concentration and ranking of compounds by odor impact (reported as calculated odor activity values)

    The relationship between chemical concentration and odor activity value explains the inconsistency in making a comprehensive surrogate scent training tool representative of illicit drugs

    Get PDF
    This report highlights the importance of an individual chemical\u27s odor impact in the olfactory identification of marijuana, cocaine, and heroin. There are small amounts of highly odorous compounds present in headspace of these drugs, with very low odor detection thresholds, that are more likely responsible for contributing to the overall odor of these drugs. Previous reports of the most abundant compounds in headspace can mislead researchers when dealing with whole odor of these drugs. Surrogate scent formulations, therefore, must match the odor impact of key compounds and not just the chemical abundance of compounds. The objective of this study was to compare odorous volatile organic compounds (VOCs) emitted from illicit drug samples of marijuana, cocaine, and heroin to surrogate smell formulations using simultaneous sensory (via human olfaction) and chemical analyses. Use of solid phase microextraction (SPME) allowed VOCs in drug headspace to be extracted and pre-concentrated on site, and analyzed by multidimensional gas chromatography–mass spectrometry–olfactometry (MDGC–MS-O). Use of MDGC–MS-O allowed for further separation of odorous compounds and simultaneous detection by the human nose of the separate odor parts that make up the total aroma of these drugs. The compounds most abundant in headspace were not the most odor impactful when ranked by odor activity values (OAVs) (defined as ratio of concentration to odor detection threshold, ODT). There were no apparent correlations between concentrations and OAVs. A 1 g marijuana surrogate lacked in odor active acids, aldehydes, ethers, hydrocarbons, N-containing, and S-containing VOCs and was overabundant in odor active alcohols and aromatics compared with real marijuana. A 1 g cocaine surrogate was overabundant in odor active alcohols, aldehydes, aromatics, esters, ethers, halogenates, hydrocarbons, ketones and N-containing compounds compared with real. A 1 g heroin surrogate should contain less odor active acids, alcohols, aromatics, esters, ketones, and N-containing compounds. Drug quantity, age and adulterants can affect VOC emissions and their odor impact. The concept of odor activity value, then, is useful to researchers without access to more sophisticated instrumentation. Odor activity values can be calculated from published odor detection thresholds. More research is warranted to expand the database, and determine odor detection thresholds for compounds of interest. Additional information could be obtained from establishing ODTs of key odorants for canines

    Characterizing the Smell of Marijuana by Odor Impact of Volatile Compounds: An Application of Simultaneous Chemical and Sensory Analysis

    Get PDF
    Recent US legislation permitting recreational use of marijuana in certain states brings the use of marijuana odor as probable cause for search and seizure to the forefront of forensic science, once again. This study showed the use of solid-phase microextraction with multidimensional gas chromatography—mass spectrometry and simultaneous human olfaction to characterize the total aroma of marijuana. The application of odor activity analysis offers an explanation as to why high volatile chemical concentration does not equate to most potent odor impact of a certain compound. This suggests that more attention should be focused on highly odorous compounds typically present in low concentrations, such as nonanal, decanol, o-cymene, benzaldehyde, which have more potent odor impact than previously reported marijuana headspace volatiles

    Odour reducing microbial-mineral additive for poultry manure treatment

    Get PDF
    Poultry production systems are associated with emissions of odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases, and particulate matter. Development of mitigation technologies for these emissions is important. Previous laboratory-scale research on microbial-mineral treatment has shown to be effective for mitigation of NH3, H2S and amines emissions from poultry manure. The aim of this research was to assess the effectiveness of surface application of a microbial-mineral treatment for other important odorants, i.e., phenolics and sulfur-containing VOCs. Microbial-mineral litter additive consisting of 20% (w/w) of bacteria powder (six strains of heterotrophic bacteria) and 80% of mineral carrier (perlite-bentonite) was used at a dose of 500 g∙m-2(per ~31 kg of manure). Samples of air were collected in two series, 4 and 7 days after application of additives. An odor profile of the poultry manure was determined using simultaneous chemical and sensory analysis. Reduction levels of VOCs determined on Day 4 was between 31% and 83% for mineral adsorbent treatment and in the range of 9% and 96% for microbial-mineral additive, depending on the analyzed compound. Reduction levels on Day 7 were considerably lower than on Day 4, suggesting that the odorous VOCs treatment efficacy is relatively short. There was no significant difference between treatments consisting of microbial-mineral additive and mineral carrier alone

    Determination of Selected Aromas in Marquette and Frontenac Wine Using Headspace-SPME Coupled with GC-MS and Simultaneous Olfactometry

    Get PDF
    Understanding the aroma profile of wines made from cold climate grapes is needed to help winemakers produce quality aromatic wines. The current study aimed to add to the very limited knowledge of aroma-imparting compounds in wines made from the lesser-known Frontenac and Marquette cultivars. Headspace solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) with simultaneous olfactometry was used to identify and quantify selected, aroma-imparting volatile organic compounds (VOC) in wines made from grapes harvested at two sugar levels (22° Brix and 24° Brix). Aroma-imparting compounds were determined by aroma dilution analysis (ADA). Odor activity values (OAV) were also used to aid the selection of aroma-imparting compounds. Principal component analysis and hierarchical clustering analysis indicated that VOCs in wines produced from both sugar levels of Marquette grapes are similar to each other, and more similar to wines produced from Frontenac grapes harvested at 24° Brix. Selected key aroma compounds in Frontenac and Marquette wines were ethyl hexanoate, ethyl isobutyrate, ethyl octanoate, and ethyl butyrate. OAVs \u3e1000 were reported for three aroma compounds that impart fruity aromas to the wines. This study provides evidence that aroma profiles in Frontenac wines can be influenced by timing of harvesting the berries at different Brix. Future research should focus on whether this is because of berry development or accumulation of aroma precursors and sugar due to late summer dehydration. Simultaneous chemical and sensory analyses can be useful for the understanding development of aroma profile perceptions for wines produced from cold-climate grapes

    Determination of Selected Aromas in Marquette and Frontenac Wine Using Headspace-SPME Coupled with GC-MS and Simultaneous Olfactometry

    Get PDF
    Understanding the aroma profile of wines made from cold climate grapes is needed to help winemakers produce quality aromatic wines. The current study aimed to add to the very limited knowledge of aroma-imparting compounds in wines made from the lesser-known Frontenac and Marquette cultivars. Headspace solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) with simultaneous olfactometry was used to identify and quantify selected, aroma-imparting volatile organic compounds (VOC) in wines made from grapes harvested at two sugar levels (22° Brix and 24° Brix). Aroma-imparting compounds were determined by aroma dilution analysis (ADA). Odor activity values (OAV) were also used to aid the selection of aroma-imparting compounds. Principal component analysis and hierarchical clustering analysis indicated that VOCs in wines produced from both sugar levels of Marquette grapes are similar to each other, and more similar to wines produced from Frontenac grapes harvested at 24° Brix. Selected key aroma compounds in Frontenac and Marquette wines were ethyl hexanoate, ethyl isobutyrate, ethyl octanoate, and ethyl butyrate. OAVs \u3e1000 were reported for three aroma compounds that impart fruity aromas to the wines. This study provides evidence that aroma profiles in Frontenac wines can be influenced by timing of harvesting the berries at different Brix. Future research should focus on whether this is because of berry development or accumulation of aroma precursors and sugar due to late summer dehydration. Simultaneous chemical and sensory analyses can be useful for the understanding development of aroma profile perceptions for wines produced from cold-climate grapes

    Evaluation of Volatile Metabolites Emitted In-Vivo from Cold-Hardy Grapes during Ripening Using SPME and GC-MS: A Proof-of-Concept

    Get PDF
    In this research, we propose a novel concept for a non-destructive evaluation of volatiles emitted from ripening grapes using solid-phase microextraction (SPME). This concept is novel to both the traditional vinifera grapes and the cold-hardy cultivars. Our sample models are cold-hardy varieties in the upper Midwest for which many of the basic multiyear grape flavor and wine style data is needed. Non-destructive sampling included a use of polyvinyl fluoride (PVF) chambers temporarily enclosing and concentrating volatiles emitted by a whole cluster of grapes on a vine and a modified 2 mL glass vial for a vacuum-assisted sampling of volatiles from a single grape berry. We used SPME for either sampling in the field or headspace of crushed grapes in the lab and followed with analyses on gas chromatography-mass spectrometry (GC-MS). We have shown that it is feasible to detect volatile organic compounds (VOCs) emitted in-vivo from single grape berries (39 compounds) and whole clusters (44 compounds). Over 110 VOCs were released to headspace from crushed berries. Spatial (vineyard location) and temporal variations in VOC profiles were observed for all four cultivars. However, these changes were not consistent by growing season, by location, within cultivars, or by ripening stage when analyzed by multivariate analyses such as principal component analysis (PCA) and hierarchical cluster analyses (HCA). Research into aroma compounds present in cold-hardy cultivars is essential to the continued growth of the wine industry in cold climates and diversification of agriculture in the upper Midwestern area of the U.S
    • …
    corecore