12,591 research outputs found

    Spin susceptibility of underdoped cuprates: the case of Ortho-II YBa_2Cu_3O_{6.5}

    Full text link
    Recent inelastic neutron scattering measurements found that the spin susceptibility of detwinned and highly ordered ortho-II YBa_2Cu_3O_{6.5} exhibits, in both the normal and superconducting states, one-dimensional incommensurate modulations at low energies which were interpreted as a signature of dynamic stripes. We propose an alternative model based on quasiparticle transitions between the arcs of a truncated Fermi surface. Such transitions are resonantly enhanced by scattering to the triplet spin resonance. We show that the anisotropy in the experimental spin response is consistent with this model if the gap at the saddle points is anisotropic.Comment: 5 fives, 3 postscript figure

    Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    Get PDF
    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing

    Analysis of nuclear waste disposal in space, phase 3. Volume 1: Executive summary of technical report

    Get PDF
    The objectives, approach, assumptions, and limitations of a study of nuclear waste disposal in space are discussed with emphasis on the following: (1) payload characterization; (2) safety assessment; (3) health effects assessment; (4) long-term risk assessment; and (5) program planning support to NASA and DOE. Conclusions are presented for each task

    Stochastic modelling of intermittent scrape-off layer plasma fluctuations

    Full text link
    Single-point measurements of fluctuations in the scrape-off layer of magnetized plasmas are generally found to be dominated by large-amplitude bursts which are associated with radial motion of blob-like structures. A stochastic model for these fluctuations is presented, with the plasma density given by a random sequence of bursts with a fixed wave form. Under very general conditions, this model predicts a parabolic relation between the skewness and kurtosis moments of the plasma fluctuations. In the case of exponentially distributed burst amplitudes and waiting times, the probability density function for the fluctuation amplitudes is shown to be a Gamma distribution with the scale parameter given by the average burst amplitude and the shape parameter given by the ratio of the burst duration and waiting times.Comment: 11 pages, 1 figur

    Nosepiece respiration monitor

    Get PDF
    Comfortable, inexpensive nosepiece respiration monitor produces rapid response signals to most conventional high impedance medical signal conditioners. The monitor measures respiration in a manner that produces a large signal with minimum delay

    Dynamical Masses of Low Mass Stars in the Taurus and Ophiuchus Star Forming Regions

    Full text link
    We report new dynamical masses for 5 pre-main sequence (PMS) stars in the L1495 region of the Taurus star-forming region (SFR) and 6 in the L1688 region of the Ophiuchus SFR. Since these regions have VLBA parallaxes these are absolute measurements of the stars' masses and are independent of their effective temperatures and luminosities. Seven of the stars have masses <0.6<0.6 solar masses, thus providing data in a mass range with little data, and of these, 6 are measured to precision <5%< 5 \%. We find 8 stars with masses in the range 0.09 to 1.1 solar mass that agree well with the current generation of PMS evolutionary models. The ages of the stars we measured in the Taurus SFR are in the range 1-3 MY, and <1<1 MY for those in L1688. We also measured the dynamical masses of 14 stars in the ALMA archival data for Akeson~\&~Jensen's Cycle 0 project on binaries in the Taurus SFR. We find that the masses of 7 of the targets are so large that they cannot be reconciled with reported values of their luminosity and effective temperature. We suggest that these targets are themselves binaries or triples.Comment: 20 page

    Fermion zero modes on vortices in chiral superconductors

    Full text link
    The energy levels of the fermions bound to the vortex core are considered for the general case of chiral superconductors. There are two classes of chiral superconductivity: in the superconducting state of class I the axisymmetric singly quantized vortex has the same energy spectrum of bound states as in s-wave superconductor: E=(n+1/2)\omega_0 with integral n. In the class II the corresponding spectrum is E=n\omega_0 and thus contains the state with exactly zero energy. The effect of a single impurity on the spectrum of bound state is also considered. For the class I the spectrum acquires the double period \Delta E=2\omega_0 and consists of two equidistant sets of levels in accordance with A.I. Larkin and Yu.N. Ovchinnikov, Phys. Rev. B57 (1998) 5457. The spectrum is not influenced by a single impurity if the same approximation is applied for vortices in the class II superconducting states.Comment: 4 pages, no figures, corrected version accepted in JETP Letter

    Semi-Phenomenological Analysis of Dynamics of Nonlinear Excitations in One-Dimensional Electron-Phonon System

    Full text link
    The structure of moving nonlinear excitations in one-dimensional electron-phonon systems is studied semi-phenomenologically by using an effective action in which the width of the nonlinear excitation is treated as a dynamical variable. The effective action can be derived from Su, Schrieffer and Heeger's model or its continuum version proposed by Takayama, Lin-Liu and Maki with an assumption that the nonlinear excitation moves uniformly without any deformation except the change of its width. The form of the action is essentially the same as that discussed by Bishop and coworkers in studying the dynamics of the soliton in polyacetylene, though some details are different. For the moving excitation with a velocity vv, the width is determined by minimizing the effective action. A requirement that there must be a minimum in the action as a function of its width provides a maximum velocity. The velocity dependence of the width and energy can be determined. The motions of a soliton in p olyacetylene and an acoustic polaron in polydiacetylene are studied within this formulation. The obtained results are in good agreement with those of numerical simulations.Comment: 19 pages, LaTeX, 7 Postscript figures, to be published in J. Phys. Soc. Jpn. vol.65 (1996) No.
    • …
    corecore