24,398 research outputs found

    On the formation time scale and core masses of gas giant planets

    Full text link
    Numerical simulations show that the migration of growing planetary cores may be dominated by turbulent fluctuations in the protoplanetary disk, rather than by any mean property of the flow. We quantify the impact of this stochastic core migration on the formation time scale and core mass of giant planets at the onset of runaway gas accretion. For standard Solar Nebula conditions, the formation of Jupiter can be accelerated by almost an order of magnitude if the growing core executes a random walk with an amplitude of a few tenths of an au. A modestly reduced surface density of planetesimals allows Jupiter to form within 10 Myr, with an initial core mass below 10 Earth masses, in better agreement with observational constraints. For extrasolar planetary systems, the results suggest that core accretion could form massive planets in disks with lower metallicities, and shorter lifetimes, than the Solar Nebula.Comment: ApJL, in pres

    Differences in the Angular Dependencies of Spin- and Symmetry-Forbidden Excitation Cross Sections by Low-Energy Electron Impact Spectroscopy

    Get PDF
    Optically forbidden electronic transitions can be produced by low-energy electron impact. Recent experimental investigations of helium (1-3) have shown that the differential scattering cross sections for forbidden excitations are generally enhanced relative to those for allowed ones at low incident energies and large scattering angles. We have now observed marked differences in the angular and energy dependencies of differential cross sections for various kinds of forbidden (spin, symmetry, or both) transitions in helium at low incident energies. Such differences may well provide a basis for determining the nature of optically forbidden transitions detected by electron-impact spectroscopy in other atoms and molecules

    Interaction of a two-level atom with squeezed light

    Get PDF
    We consider a degenerate parametric oscillator whose cavity contains a two-level atom. Applying the Heisenberg and quantum Langevin equations, we calculate in the bad-cavity limit the mean photon number, the quadrature variance, and the power spectrum for the cavity mode in general and for the signal light and fluorescent light in particular. We also obtain the normalized second-order correlation function for the fluorescent light. We find that the presence of the two-level atom leads to a decrease in the degree of squeezing of the signal light. It so turns out that the fluorescent light is in a squeezed state and the power spectrum consists of a single peak only.Comment: 9 pages and 9 figures, in press, Opt. Commu

    Star Formation Around Super-Massive Black Holes

    Full text link
    The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the Galactic centre is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, while transporting the stars to the Galactic centre also appears unlikely during their stellar lifetimes. We present numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disc that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas to 100-1000K, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disc and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process can therefore explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole.Comment: 20 pages includingh 7 figures. "This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science, 321, (22 August 2008), doi:10.1126/science.1160653". Reprints and animations can be found at http://star-www.st-and.ac.uk/~iab1

    Flow visualization in long neck Helmholtz resonators with grazing flow

    Get PDF
    Both oscillating and steady flows were applied to a single plexiglass resonator cavity with colored dyes injected in both the orifice and grazing flow field to record the motion of the fluid. For oscillatory flow, the instantaneous dye streamlines were similar for both the short and long-neck orifices. The orifice flow blockage appears to be independent of orifice length for a fixed amplitude of flow oscillation and magnitude of the grazing flow. The steady flow dye studies showed that the acoustic and steady flow resistances do not necessarily correspond for long neck orifices

    Vortices in self-gravitating disks

    Full text link
    Vortices are believed to greatly help the formation of km sized planetesimals by collecting dust particles in their centers. However, vortex dynamics is commonly studied in non-self-gravitating disks. The main goal here is to examine the effects of disk self-gravity on the vortex dynamics via numerical simulations. In the self-gravitating case, when quasi-steady gravitoturbulent state is reached, vortices appear as transient structures undergoing recurring phases of formation, growth to sizes comparable to a local Jeans scale, and eventual shearing and destruction due to gravitational instability. Each phase lasts over 2-3 orbital periods. Vortices and density waves appear to be coupled implying that, in general, one should consider both vortex and density wave modes for a proper understanding of self-gravitating disk dynamics. Our results imply that given such an irregular and rapidly changing, transient character of vortex evolution in self-gravitating disks it may be difficult for such vortices to effectively trap dust particles in their centers that is a necessary process towards planet formation.Comment: to appear in the proceedings of Cool Stars, Stellar Systems and The Sun, 15th Cambridge Workshop, St. Andrews, Scotland, July 21-25, 200
    corecore