23,623 research outputs found

    Flow to strong coupling in the two-dimensional Hubbard model

    Full text link
    We extend the analysis of the renormalization group flow in the two-dimensional Hubbard model close to half-filling using the recently developed temperature flow formalism. We investigate the interplay of d-density wave and Fermi surface deformation tendencies with those towards d-wave pairing and antiferromagnetism. For a ratio of next nearest to nearest neighbor hoppings, t'/t=-0.25, and band fillings where the Fermi surface is inside the Umklapp surface, only the d-pairing susceptibility diverges at low temperatures. When the Fermi surface intersects the Umklapp surface close to the saddle points, d-wave pairing, d-density wave, antiferromagnetic and, to a weaker extent, d-wave Fermi surface deformation susceptibilities grow together when the interactions flow to strong coupling. We interpret these findings as indications for a non-trivial strongly coupled phase with short-ranged superconducting and antiferromagnetic correlations, in close analogy with the spin liquid ground state in the well-understood two-leg Hubbard ladder.Comment: 8 pages, to appear in European Physical Journal

    Orbital Dependence of Quasiparticle Lifetimes in Sr2RuO4

    Full text link
    Using a phenomenological Hamiltonian, we investigate the quasiparticle lifetimes and dispersions in the three low energy bands, gamma, beta, and alpha of Sr2RuO4. Couplings in the Hamiltonian are fixed so as to produce the mass renormalization as measured in magneto-oscillation experiments. We thus find reasonable agreement in all bands between our computed lifetimes and those measured in ARPES experiments by Kidd et al. [1] and Ingle et al. [2]. In comparing computed to measured quasiparticle dispersions, we however find good agreement in the alpha-band alone.Comment: 7 pages, 5 figure

    Landau-Fermi liquid analysis of the 2D t-t' Hubbard model

    Full text link
    We calculate the Landau interaction function f(k,k') for the two-dimensional t-t' Hubbard model on the square lattice using second and higher order perturbation theory. Within the Landau-Fermi liquid framework we discuss the behavior of spin and charge susceptibilities as function of the onsite interaction and band filling. In particular we analyze the role of elastic umklapp processes as driving force for the anisotropic reduction of the compressibility on parts of the Fermi surface.Comment: 10 pages, 16 figure

    Handbook for Learning-centred evaluation of Computer-facilitated learning projects in higher education

    Get PDF
    This handbook supports a project funded by the Australian Government Committee for University Teaching and Staff Development (CUTSD). The amended project title is “Staff Development in Evaluation of Technology-based Teaching Development Projects: An Action Inquiry Approach”. The project is hosted by Murdoch University on behalf of the Australasian Society for Computers in Learning in Tertiary Education (ASCILITE), as a consortium of 11 universities. The rationale of the project is to guide a group of university staff through the evaluation of a Computer-facilitated Learning (CFL1) project by a process of action inquiry and mentoring, supported by the practical and theoretical material contained in this handbook

    The role of the energy equation in the fragmentation of protostellar discs during stellar encounters

    Get PDF
    In this paper, we use high-resolution smoothed particle hydrodynamics (SPH) simulations to investigate the response of a marginally stable self-gravitating protostellar disc to a close parabolic encounter with a companion discless star. Our main aim is to test whether close brown dwarfs or massive planets can form out of the fragmentation of such discs. We follow the thermal evolution of the disc by including the effects of heating due to compression and shocks and a simple prescription for cooling and find results that contrast with previous isothermal simulations. In the present case we find that fragmentation is inhibited by the interaction, due to the strong effect of tidal heating, which results in a strong stabilization of the disc. A similar behaviour was also previously observed in other simulations involving discs in binary systems. As in the case of isolated discs, it appears that the condition for fragmentation ultimately depends on the cooling rate.Comment: 9 pages, 10 figures, accepted in MNRA

    Characterization and properties of controlled nucleation thermochemical deposited (CNTD) silicon carbide

    Get PDF
    The microstructure of controlled nucleation thermochemical deposition (CNTD) - SiC material was studied and the room temperature and high temperature bend strength and oxidation resistance was evaluated. Utilizing the CNTD process, ultrafine grained (0.01-0.1 mm) SiC was deposited on W - wires (0.5 mm diameter by 20 cm long) as substrates. The deposited SiC rods had superior surface smoothness and were without any macrocolumnar growth commonly found in conventional CVD material. At both room and high temperature (1200 - 1380 C), the CNTD - SiC exhibited bend strength approximately 200,000 psi (1380 MPa), several times higher than that of hot pressed, sintered, or CVD SiC. The excellent retention of strength at high temperature was attributed to the high purity and fine grain size of the SiC deposit and the apparent absence of grain growth at elevated temperatures. The rates of weight change for CNTD - SiC during oxidation were lower than for NC-203 (hot pressed SiC), higher than for GE's CVD - SiC, and considerably below those for HS-130 (hot pressed Si3N4). The high purity, fully dense, and stable grain size CNTD - SiC material shows potential for high temperature structural applications; however problem areas might include: scaling the process to make larger parts, deposition on removable substrates, and the possible residual tensile stress
    • 

    corecore