290 research outputs found

    What are the Alternative to Financing Students in Higher Education during a Period of Retrenchment?

    Get PDF

    Application of an integrated geotechnical and topographic monitoring system in the Lorano marble quarry (Apuan Alps, Italy)

    Get PDF
    PublishedThis is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.geomorph.2015.04.009Accurate slope stability analysis is essential for human activity in high-risk geological contexts. This may, however, not be enough in the case of quarrying where the dynamic and evolving environment also requires effective monitoring. A well-designed monitoring system requires the acquisition of a huge dataset over time, improving knowledge of the study area and helping to refine prediction from stability analysis.This paper reports the implementation of an integrated monitoring system in a marble quarry in the Apuan Alps (Italy) and some of the results obtained. The equipment consists of a traditional geotechnical monitoring system (extensometers, crackmeters and clinometers) and two modern topographic monitoring systems (a terrestrial interferometer and a robotic total station). This work aims to provide in-depth knowledge of the large scale rock mass behaviour as a result of marble exploitation, thereby allowing continuous excavation. The results highlight the importance of integrating different monitoring systems.The present study was undertaken within the framework of the Italian National Research Project PRIN2009, funded by the Ministry of Education, Universities and Research, which involves the collaboration between the University of Siena, “La Sapienza” University of Rome, and USL1 of Massa and Carrara (Mining Engineering Operative Unit - Department of Prevention)

    Magnetic-Oriented Nickel Particles and Nickel-Coated Carbon Nanotubes: An Efficient Tool for Enhancing Thermal Conductivity of PDMS Composites

    Get PDF
    In this study, PDMS composites are thermally cured with nickel particles and nickel-coated carbon nanotubes as fillers. Both fillers are oriented with the aim to increase the thermal conductivity of the silicone polymer network, due to the formation of a continuous thermal path. Scanning electron microscopy (SEM) gives a picture of the polymer network's morphology, proving the effective alignment of the nickel particles. Rheology and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) studies confirm the full curing of the silicon network and no influence in the curing kinetics of the type and content of fillers and their orientation. Dynamic mechanical thermal analysis (DMTA) and tensile analysis show instead different thermo-mechanical behavior of the polymer network due to the presence of different fillers, different fillers percentage, and orientation. Finally, the thermal transmittance coefficient (k) is studied by means of hot disk analysis, revealing the increment of almost 200% due to magnetic filler orientation

    An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: slope stability assessment through kinematic and numerical methods

    Get PDF
    PublishedJournal Article© 2015 Elsevier Ltd. Over the last decade, terrestrial laser scanning and digital terrestrial photogrammetry techniques have been increasingly used in the geometrical characterization of rock slopes. These techniques provide innovative remote sensing tools which overcome the frequent problem of rock slope inaccessibility. Comprehensive datasets characterizing the structural geological setting and geometry of the slopes can be obtained. The derived information is very useful in rock slope investigations and finds application in a wide variety of geotechnical and mine operations. In this research an integrated remote sensing - GIS approach is proposed for the deterministic kinematic characterization of the Lorano open pit in the Apuan Alps of Italy. Based on the results of geomatic and engineering geological surveys, additional geomechanical analysis using a 3D finite difference method will be presented in order to provide a better understanding of the role of stress-induced damage on slope performance

    AI for the Public Sector: Opportunities and challenges of cross-sector collaboration

    Get PDF
    Public sector organisations are increasingly interested in using data science and artificial intelligence capabilities to deliver policy and generate efficiencies in high uncertainty environments. The long-term success of data science and AI in the public sector relies on effectively embedding it into delivery solutions for policy implementation. However, governments cannot do this integration of AI into public service delivery on their own. The UK Government Industrial Strategy is clear that delivering on the AI grand challenge requires collaboration between universities and public and private sectors. This cross-sectoral collaborative approach is the norm in applied AI centres of excellence around the world. Despite their popularity, cross-sector collaborations entail serious management challenges that hinder their success. In this article we discuss the opportunities and challenges from AI for public sector. Finally, we propose a series of strategies to successfully manage these cross-sectoral collaborations

    Differential X-ray attenuation in MA-XRF analysis for a non-invasive determination of gilding thickness

    Get PDF
    When investigating gilded artifacts or works of art, the determination of the gilding thickness plays a significant role in establishing restoration protocols or conservation strategies. Unfortunately, this is done by cross-sectioning the object, a destructive approach not always feasible. A non-destructive alternative, based on the differential attenuation of fluorescence radiation from the sample, has been developed in the past years, but due to the intrinsic random nature of X-rays, the study of single or few spots of an objects surface may yield biased information. Furthermore, considering the effects of both porosity and sample inhomogeneities is a practice commonly overlooked, which may introduce systematic errors. In order to overcome these matters, here we propose the extrapolation of the differential-attenuation method from single-spot X-ray fluorescence (XRF) measurements to macro-XRF (MA-XRF) scanning. In this work, an innovative algorithm was developed for evaluating the large amount of data coming from MA-XRF datasets and evaluate the thickness of a given overlapping layer over an area. This approach was adopted to study a gilded copper-based buckle from the sixteenth to seventeenth century found in Rome. The gilded object under investigation was also studied by other analytical techniques including scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). Previous results obtained from SEM-EDS were used to confront the data obtained with the proposed methodology and validate it. MA-XRF elemental distribution maps were fundamental in identifying and choosing sampling areas to calculate the thickness of the gilding layer, avoiding lead islands present in the sample that could negatively influence the results. Albeit the large relative standard deviation, the mean thickness values fell within those found in literature and those obtained from previous studies with SEM-EDS. Surface fissure has been found to deeply affect the results obtained, an aspect that is often disregarded

    Microchemical Investigation of Long-Term Buried Gilded and Silvered Artifacts From Ancient Peru

    Get PDF
    A large number of metal artifacts with exceptional artistic value of the Moche culture have been found in the tombs of the Lords of Sipán (Lambayeque, Peru) and of the Lady of Cao (El Brujo, Peru) characterized by different burial conditions. Some of the objects, dated around 300–400 AD, are constituted by substrates of Cu- or Ag-based alloys coated by uniformly distributed thin films of precious metal (1–4 microns) that create also polymetallic bicolored surfaces with "gold" and "silver" areas. In order to investigate the corrosion product structure and composition as well as to identify the techniques used to give the gold or silver appearance, an integrated analytical approach has been adopted. The selected complementary methodologies were scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and optical microscopy (OM). The findings reveal that the substrates are mainly composed of Cu-Ag-Au alloys that at the site of Sipán have been almost completely corroded during the burial. Furthermore, the results show that the main aggressive agent is Cl– coming from the soil and that the degradation phenomena were likely enhanced by the galvanic coupling between the precious metal layer and the less noble substrate. The degradation products have formed mainly layered structures containing chloroargyrite (AgCl), cuprite (Cu2O), nantokite (CuCl), and atacamite [CuCl2.3Cu(OH)2] polymorphs. These latter species warn that dangerous copper cyclic corrosion is occurring, a harmful phenomenon, commonly defined as "bronze disease," which must be firmly mitigated. Finally, the findings reveal that the Moche metal workers used the depletion gilding to selectively modify the surface chemical composition of the artifacts to produce the Ag or Au thin films. According to this subtractive method, the surface of the Cu-Au-Ag alloys was enriched with a layer of precious metal by means of cycles of thermal treatments and removal of Cu or both Cu and Ag from the outermost region by using pickling solutions

    Do Human Resource Departments Act as Strategic Partners? Strategic Human Capital Management Adoption by County Governments

    Get PDF
    Drawing on qualitative data from forty counties in New York and North Carolina, this article examines the adoption of strategic human capital management (SHCM) principles and practices at the county level and presents a typology of five levels of SHCM adoption. The level of SHCM implementation in a county depends on: the view of the HR function by executive county leadership, the capacity of the county to engage in strategic planning and management, and the capacity of the HR director to think strategically about the role of HR in the government. The article concludes with recommendations for practice, which focus on educating a diverse set of actors about SHCM, building executive level support, developing HR skill and competencies, and applying basic change management practices

    Investigating the health implications of social policy initiatives at the local level: study design and methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this paper we present the research design and methods of a study that seeks to capture local level responses to an Australian national social policy initiative, aimed at reducing inequalities in the social determinants of health.</p> <p>Methods/Design</p> <p>The study takes a policy-to-practice approach and combines policy and stakeholder interviewing with a comparative case study analysis of two not-for-profit organisations involved in the delivery of federal government policy.</p> <p>Discussion</p> <p>Before the health impacts of broad-scale policies, such as the one described in this study, can be assessed at the population level, we need to understand the implementation process. This is consistent with current thinking in political science and social policy, which has emphasised the importance of investigating how, and if, policies are translated into operational realities.</p
    • 

    corecore