6,514 research outputs found

    The good receipt for the kidneys: Salty...but not too much

    Get PDF

    Latent AKI is... still AKI: The quantification of the burden of renal dysfunction

    Get PDF
    The association between pediatric cardiac surgery, acute kidney injury (AKI), and clinical outcomes has been studied several times in the recent literature. In this issue of Critical Care an interesting and original study analyzed the path from causal AKI entities to clinical AKI consequences through the application of structural equation modeling. The authors described the complex connections linking duration of cardiopulmonary bypass, cross clamp-time, and descriptors of low cardiac output syndrome to AKI modeled as a complex variable composed of post-operative serum creatinine increase of 50 % over baseline, urine output <0.5 ml/kg/h, and urine creatinine-normalized neutrophil gelatinase lipocalin within 12 h of surgery. Similarly, the causal relationships between AKI and hard outcomes in the analyzed population were verified and quantified. The authors, for the first time, produce a repeatable coefficient (0.741) that may become a useful quality benchmark and could be applied to test future interventions aiming to reduce the burden of AKI on children’s clinical course

    Iron‐Mediated Electrophilic Amination of Organozinc Halides using Organic Azides

    Get PDF
    A wide range of alkyl‐, aryl‐ and heteroarylzinc halides were aminated with highly functionalized alkyl, aryl, and heterocyclic azides. The reaction proceeds smoothly at 50 °C within 1 h in the presence of FeCl3 (0.5 equiv) to furnish the corresponding secondary amines in good yields. This method was extended to peptidic azides and provided the arylated substrates with full retention of configuration. To demonstrate the utility of this reaction, we prepared two amine derivatives of pharmaceutical relevance using this iron‐mediated electrophilic amination as the key step

    Incommensurate spin correlations in highly oxidized cobaltates La2−x_{2-x}Srx_{x}CoO4_{4}

    Get PDF
    We observe quasi-static incommensurate magnetic peaks in neutron scattering experiments on layered cobalt oxides La2-xSrxCoO4 with high Co oxidation states that have been reported to be paramagnetic. This enables us to measure the magnetic excitations in this highly hole-doped incommensurate regime and compare our results with those found in the low-doped incommensurate regime that exhibit hourglass magnetic spectra. The hourglass shape of magnetic excitations completely disappears given a high Sr doping. Moreover, broad low-energy excitations are found, which are not centered at the incommensurate magnetic peak positions but around the quarter-integer values that are typically exhibited by excitations in the checkerboard charge ordered phase. Our findings suggest that the strong inter-site exchange interactions in the undoped islands are critical for the emergence of hourglass spectra in the incommensurate magnetic phases of La2-xSrxCoO4.Comment: http://www.nature.com/articles/srep25117

    Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides La2−x_{2-x}Srx_xCoO4_4

    Get PDF
    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.Comment: Nature Communications 5, 5731 (2014
    • 

    corecore