33 research outputs found

    Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2

    Get PDF
    Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER) and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2), mutations in which underlie familial Alzheimer's disease (FAD), promotes ER-mitochondria coupling only in the presence of mitofusin 2 (Mfn2). PS2 is not necessary for the antagonistic effect of Mfn2 on organelle coupling, although its abundance can tune it. The two proteins physically interact, whereas their homologues Mfn1 and PS1 are dispensable for this interplay. Moreover, PS2 mutants associated with FAD are more effective than the wild-type form in modulating ER-mitochondria tethering because their binding to Mfn2 in mitochondria-associated membranes is favored. We propose a revised model for ER-mitochondria interaction to account for these findings and discuss possible implications for FAD pathogenesis

    Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2

    Get PDF
    Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER) and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2), mutations in which underlie familial Alzheimer’s disease (FAD), promotes ER-mitochondria coupling only in the presence of mitofusin 2 (Mfn2). PS2 is not necessary for the antagonistic effect of Mfn2 on organelle coupling, although its abundance can tune it. The two proteins physically interact, whereas their homologues Mfn1 and PS1 are dispensable for this interplay. Moreover, PS2 mutants associated with FAD are more effective than the wild-type form in modulating ER-mitochondria tethering because their binding to Mfn2 in mitochondrial-associated membranes is favored. We propose a revised model for ER-mitochondria interaction to account for these findings and discuss possible implications for FAD pathogenesis

    Accuracy of the digital workflow for guided insertion of orthodontic palatal TADs: a step-by-step 3D analysis

    Get PDF
    BACKGROUND: The introduction in the orthodontic field of the digital workflow for guided insertion of palatal TADs and the development of the 1-visit protocol led to the reduction of chair time and the possibility of complete customization of designs and materials. Conversely, the reduction of operative steps implicates a lower tolerance of deviations between the planned and the actual position of the miniscrews, particularly when the orthodontic device is fixed on 4 palatal TADs or has a rigid structure. This study aims to analyze the influence of each step of the digital workflow on the deviation of the miniscrews' axis of insertion in a bicortical sample. The null hypothesis is that there are no significant differences in the deviations among the operative steps. METHODS: 33 subjects were selected for insertion of bicortical palatal miniscrews with a 1-visit protocol. Digital files were collected at the three stages of the workflow (i.e., digital planning, laboratory prototype, post-insertion impression). A 3D software analysis was performed on a total of 64 miniscrews. After automatic shape recognition of the guiding holes of the digital plan and the scanbodies of the laboratory prototype and post-insertion impression as geometric cylinders, their three-dimensional longitudinal axis was traced and the deviation among them was calculated. Friedman test with Bonferroni correction was performed to assess the significance of the deviations among the three steps, with significance set at p < 0.05. RESULTS: The laboratory step has a significantly lower degree of deviations (2.12° ± 1.62) than both the clinical step (6.23° ± 3.75) and the total deviations (5.70° ± 3.42). No significant differences were found between miniscrews inserted on the left or the right side. CONCLUSIONS: This study suggests that laboratory procedures such as surgical guide production or rapid prototyping don't play a significant role in the degree of deviations between the planned and the positioned palatal TADs. Conversely, the clinical steps have a bigger influence and need to be carefully evaluated. Despite this difference, there is a cumulative effect of deviations that can lead to the failure of the 1-visit protocol

    Correlation between Microvascular Damage and Internal Organ Involvement in Scleroderma: Focus on Lung Damage and Endothelial Dysfunction

    Get PDF
    Background. Systemic sclerosis (SSc) is an incurable connective tissue disease characterized by decreased peripheral blood perfusion due to microvascular damage and skin thickening/hardening. The microcirculation deficit is typically secondary to structural vessel damage, which can be assessed morphologically and functionally in a variety of ways, exploiting different technologies. Objective. This paper focuses on reviewing new studies regarding the correlation between microvascular damage, endothelial dysfunction, and internal organ involvement, particularly pulmonary changes in SSc. Methods. We critically reviewed the most recent literature on the correlation between blood perfusion and organ involvement. Results. Many papers have demonstrated the link between structural microcirculatory damage and pulmonary involvement; however, studies that have investigated correlations between microvascular functional impairment and internal organ damage are scarce. Overall, the literature supports the correlation between organ involvement and functional microcirculatory impairment in SSc patients. Conclusions. Morphological and functional techniques appear to be emerging biomarkers in SSc, but obviously need further investigation

    SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition

    Get PDF
    Contact sites are discrete areas of organelle proximity that coordinate essential physiological processes across membranes, including Ca2+ signaling, lipid biosynthesis, apoptosis, and autophagy. However, tools to easily image inter-organelle proximity over a range of distances in living cells and in vivo are lacking. Here we report a split-GFP-based contact site sensor (SPLICS) engineered to fluoresce when organelles are in proximity. Two SPLICS versions efficiently measured narrow (8\u201310 nm) and wide (40\u201350 nm) juxtapositions between endoplasmic reticulum and mitochondria, documenting the existence of at least two types of contact sites in human cells. Narrow and wide ER\u2013mitochondria contact sites responded differently to starvation, ER stress, mitochondrial shape modifications, and changes in the levels of modulators of ER\u2013mitochondria juxtaposition. SPLICS detected contact sites in soma and axons of D. rerio Rohon Beard (RB) sensory neurons in vivo, extending its use to analyses of organelle juxtaposition in the whole anim

    Nintedanib in Idiopathic Pulmonary Fibrosis: Tolerability and Safety in a Real Life Experience in a Single Centre in Patients also Treated with Oral Anticoagulant Therapy

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a rare and severe disease with a median survival of ~3 years. Nintedanib (NTD) has been shown to be useful in controlling interstitial lung disease (ILD) in IPF. Here we describe the experience of NTD use in IPF in a real-life setting. Objective. Our objective was to examine the safety profile and efficacy of nintedanib even in subjects treated with anticoagulants. Clinical data of patients with IPF treated with NTD at our center were retrospectively evaluated at baseline and at 6 and 12 months after the introduction of NTD. The following parameters were recorded: IPF clinical features, NTD tolerability, and pulmonary function tests (PFT) (i.e., Forced Vital Capacity (FVC) and carbon monoxide diffusing capacity (DLCO)). In total, 56 IPF patients (34% female and 66% male, mean onset age: 71 ± 11 years, mean age at baseline: 74 ± 9 years) treated with NTD were identified. At enrollment, HRCT showed an UIP pattern in 45 (80%) and a NSIP in 11 (20%) patients. For FVC and FEV1 we found no significant change between baseline and 6 months, but for DLCO we observed a decrease (p = 0.012). We identified a significant variation between baseline and 12 months for FEV1 (p = 0.039) and for DLCO (p = 0.018). No significant variation was observed for FVC. In the cohort, 18 (32%) individuals suspended NTD and 10 (18%) reduced the dosage. Among individuals that suspended the dosage, 14 (78%) had gastrointestinal (GI) collateral effects (i.e., diarrhea being the most common complaint (67%), followed by nausea/vomiting (17%) and weight loss (6%). Bleeding episodes have also not been reported in patients taking anticoagulant therapy. (61%). One patient died within the first 6 months and two subjects died within the first 12 months. In a real-life clinical scenario, NTD may stabilize the FVC values in IPF patients. However, GI side effects are frequent and NTD dose adjustment may be necessary to retain the drug in IPF patients. This study confirms the safety of NTD, even in patients treated with anticoagulant drugs

    Chronic Thromboembolic Pulmonary Hypertension: An Observational Study

    Get PDF
    Background and Objectives: Chronic thromboembolic pulmonary hypertension (CTEPH) has a high mortality. The treatment of CTEPH could be balloon pulmonary angioplasty (BPA), medical (MT) or pulmonary endarterectomy (PEA). This study aims to assess the clinical characteristics of CTEPH patients, surgically or medically treated, in a pulmonology referral center. Materials and Methods: A total of 124 patients with PH with suspected CTEPH (53 male subjects and 71 female subjects; mean age at diagnosis 67 ± 6) were asked to give informed consent and then were evaluated. The presence of CTEPH was ascertained by medical evaluations, radiology and laboratory tests. Results: After the evaluation of all clinical data, 65 patients met the inclusion criteria for CTEPH and they were therefore enrolled (22 males and 43 females; mean age at diagnosis was 69 ± 8). 26 CTEPH patients were treated with PEA, 32 with MT and 7 with BPA. There was a statistically significant age difference between the PEA and MT groups, at the time of diagnosis, the PEA patients were younger than the MT patients, whereas there was no statistically significant difference in other clinical characteristics (e.g., smoking habit, thrombophilia predisposition), as well as functional and hemodynamic parameters (e.g., 6-min walk test, right heart catheterization). During three years of follow-up, no patients in the PEA groups died; conversely, eleven patients in the MT group died during the same period (p &lt; 0.05). Furthermore, a significant decrease in plasma BNP values and an increase in a meter at the six-minute walk test, 1 and 3 years after surgery, were observed in the PEA group (p &lt; 0.05). Conclusions: This study seems to confirm that pulmonary endarterectomy (PEA) can provide an improvement in functional tests in CTEP

    Theory and Practice of Glucocorticoids in COVID-19: Getting to the Heart of the Matter-A Critical Review and Viewpoints

    Get PDF
    Prolonged, low-dose glucocorticoids (GCs) have shown the highest efficacy among pharmacological and non-pharmacological treatments for COVID-19. Despite the World Health Organization's recommendation against their use at the beginning of the pandemic, GCs at a dose equivalent to dexamethasone 6 mg/day for 10 days are now indicated in all COVID-19 cases who require respiratory support. However, the efficacy of the intervention depends on the timing of initiation, the dose, and other individual factors. Indeed, patients treated with similar GC protocols often experience different outcomes, which do not always correlate with the presence of comorbidities or with the severity of respiratory involvement at baseline. This prompted us to critically review the literature on the rationale, pharmacological principles, and clinical evidence that should guide GC treatment. Based on these data, the best treatment protocol probably involves an initial bolus dose to saturate the glucocorticoid receptors, followed by a continuous infusion to maintain constant plasma levels, and eventually a slow tapering to interruption. Methylprednisolone has shown the highest efficacy among different GC molecules, most likely thanks to its higher ability to penetrate the lung. Decreased tissue sensitivity to glucocorticoids is thought to be the main mechanism accounting for the lower response to the treatment in some individuals. We do not have a readily available test to identify GC resistance; therefore, to address inter-individual variability, future research should aim at investigating clinical, physiological, and laboratory markers to guide a personalized GC treatment approach

    Prolonged higher dose methylprednisolone vs. conventional dexamethasone in COVID-19 pneumonia: a randomised controlled trial (MEDEAS)

    Get PDF
    Dysregulated systemic inflammation is the primary driver of mortality in severe COVID-19 pneumonia. Current guidelines favor a 7-10-day course of any glucocorticoid equivalent to dexamethasone 6 mg·day-1. A comparative RCT with a higher dose and a longer duration of intervention was lacking
    corecore