170 research outputs found

    Food proteins and peptides

    Get PDF
    The qualitative and quantitative determination of proteins and peptides in raw or processed food is experiencing a growing interest and importance from both scientific and economic point of view. Proteomics and peptidomics are relatively new entries in the field of food security, safety and authenticity, and themselves can contribute to the emergence of new branches of the science of food, such as foodomics and the just born nutriomics, digestomics, and gut metagenomics/metaproteomics. Mass spectrometry, in combination with a wide variety of separation methods and bioinformatic tools, is the principal methodology for proteomics. Both the so-called "in-gel" and "gel-free shotgun" bottom-up approaches are widely used.Among the arguments described in this chapter there are: stress effects on gene expression, postharvest (plant) and postmortem (livestock) protein modification, food safety, quality and authentication, food processing and quality control, frauds discovery, food peptidomics and digestomics. © 2015 Elsevier B.V

    A rapid magnetic solid phase extraction method followed by liquid chromatography-tandem mass spectrometry analysis for the determination of mycotoxins in cereals

    Get PDF
    Mycotoxins can contaminate various food commodities, including cereals. Moreover, mycotoxins of different classes can co-contaminate food, increasing human health risk. Several analytical methods have been published in the literature dealing with mycotoxins determination in cereals. Nevertheless, in the present work, the aim was to propose an easy and effective system for the extraction of six of the main mycotoxins from corn meal and durum wheat flour, i.e., the main four aflatoxins, ochratoxin A, and the mycoestrogen zearalenone. The developed method exploited magnetic solid phase extraction (SPE), a technique that is attracting an increasing interest as an alternative to classical SPE. Therefore, the use of magnetic graphitized carbon black as a suitable extracting material was tested. The same magnetic material proved to be effective in the extraction of mycoestrogens from milk, but has never been applied to complex matrices as cereals. Ultra high-performance liquid chromatography tandem mass spectrometry was used for detection. Recoveries were > 60% in both cereals, even if the matrix effects were not negligible. The limits of quantification of the method results were comparable to those obtained by other two magnetic SPE-based methods applied to cereals, which were limited to one or two mycotoxins, whereas in this work the investigated mycotoxins belonged to three different chemical classes

    Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding

    Get PDF
    The aim of the present work is to investigate on the mechanical and microstructural properties of dissimilar 2024 and 7075 aluminium sheets joined by friction stir welding (FSW). The two sheets, aligned with perpendicular rolling directions, have been successfully welded; successively, the welded sheets have been tested under tension at room temperature in order to analyse the mechanical response with respect to the parent materials. The fatigue endurance (S–N) curves of the welded joints have been achieved, since the fatigue behaviour of light welded sheets is the best performance indicator for a large part of industrial applications; a resonant electro-mechanical testing machine load and a constant load ratio RZsmin/smaxZ0.1 have been used at a load frequency of about 75 Hz. The resulted microstructure due to the FSW process has been studied by employing optical and scanning electron microscopy either on ‘as welded’ specimens and on tested specimen after rupture occurred

    Compression of the inferior vena cava in bowel obstruction

    Get PDF
    INTRODUCTION: We investigated whether (a) the inferior vena cava (IVC) is compressed in bowel obstruction and (b) some tracts are more compressed than others. METHODS: Two groups of abdominal computed tomography (CT) examinations were collected retrospectively. Group O (N = 69) scans were positive for bowel obstruction, group C (N = 50) scans were negative for diseases. IVC anteroposterior and lateral diameters (APD, LAD) were assessed at seven levels. RESULTS: In group C, IVC section had an elliptic shape (APD/LAD: .76 \ub1 .14), the area of which increased gradually from 1.9 (confluence of the iliac veins) to 3.1\u2009cm\ub2/m\ub2 of BSA (confluence of the hepatic veins) with a significant narrowing in the hepatic section. In group O, bowel obstruction caused a compression of IVC (APD/LAD: .54 \ub1 .17). Along its course, IVC section area increased from 1.3 to 2.5\u2009cm\ub2/m\ub2. At ROC curve analysis, an APD/LAD ratio lower than 0.63 above the confluence of the iliac veins discriminated between O and C groups with sensitivity of 74% and specificity of 96%. CONCLUSIONS: Bowel obstruction caused a compression of IVC, which involved its entire course except for the terminal section. APD/LAD ratio may be useful to monitor the degree of compression

    Photocatalytic Activity of Cellulose Acetate Nanoceria/Pt Hybrid Mats Driven by Visible Light Irradiation

    Get PDF
    A photocatalytic system for the degradation of aqueous organic pollutants under visible light irradiation is obtained by an innovative approach based on ceria/platinum (Pt) hybrid nanoclusters on cellulose acetate fibrous membranes. The catalytic materials are fabricated by supersonic beam deposition of Pt nanoclusters directly on the surface of electrospun cellulose acetate fibrous mats, pre-loaded with a cerium salt precursor that is transformed into ceria nanoparticles directly in the solid mats by a simple thermal treatment. The presence of Pt enhances the oxygen vacancies on the surface of the formed ceria nanoparticles and reduces their band gap, resulting in a significant improvement of the photocatalytic performance of the composite mats under visible light irradiation. Upon the appropriate pretreatment and visible light irradiation, we prove that the most efficient mats, with both ceria nanoparticles and Pt nanoclusters, present a degradation efficiency of methylene blue of 70% and a photodegradation rate improved by about five times compared to the ceria loaded samples, without Pt. The present results bring a significant improvement of the photocatalytic performance of polymeric nanocomposite fibrous systems under visible light irradiation, for efficient wastewater treatment applications

    Polydopamine-coated magnetic nanoparticles for isolation and enrichment of estrogenic compounds from surface water samples followed by liquid chromatography-tandem mass spectrometry determination

    Get PDF
    Estrogens, phytoestrogens, and mycoestrogens may enter into the surface waters from different sources, such as effluents of municipal wastewater treatment plants, industrial plants, and animal farms and runoff from agricultural areas. In this work, a multiresidue analytical method for the determination of 17 natural estrogenic compounds, including four steroid estrogens, six mycoestrogens, and seven phytoestrogens, in river water samples has been developed. (Fe3O4)-based magnetic nanoparticles coated by polydopamine (Fe3O4@pDA) were used for dispersive solid-phase extraction, and the final extract was analyzed by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. The Fe3O4 magnetic nanoparticles were prepared by a co-precipitation procedure, coated by pDA, and characterized by scanning electron microscopy, infrared spectroscopy, and elemental analysis. The sample preparation method was optimized in terms of extraction recovery, matrix effect, selectivity, trueness, precision, method limits of detection, and method limits of quantification (MLOQs). For all the 17 analytes, recoveries were >70 % and matrix effects were below 30 % when 25 mL of river water sample was treated with 90 mg of Fe3O4@pDA nanoparticles. Selectivity was tested by spiking river water samples with 50 other compounds (mycotoxins, antibacterials, conjugated hormones, UV filters, alkylphenols, etc.), and only aflatoxins and some benzophenones showed recoveries >60 %. This method proved to be simple and robust and allowed the determination of natural estrogenic compounds belonging to different classes in surface waters with MLOQs ranging between 0.003 and 0.1 μg L(-1). Graphical Abstract Determination of natural estrogenic compounds in water by magnetic solid phase extraction followed by liquid chromatography-tandem mass spectrometry analysis

    Dual Source Photon-Counting Computed Tomography-Part II: Clinical Overview of Neurovascular Applications

    Get PDF
    Photon-counting detector (PCD) is a novel computed tomography detector technology (photon-counting computed tomography-PCCT) that presents many advantages in the neurovascular field, such as increased spatial resolution, reduced radiation exposure, and optimization of the use of contrast agents and material decomposition. In this overview of the existing literature on PCCT, we describe the physical principles, the advantages and the disadvantages of conventional energy integrating detectors and PCDs, and finally, we discuss the applications of the PCD, focusing specifically on its implementation in the neurovascular field
    • …
    corecore