797 research outputs found

    Patterns of Strong Coupling for LHC Searches

    Full text link
    Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. Our construction provides the so far unique structurally robust context where to motivate several searches in Higgs physics, diboson production, or WW scattering, which were so far poorly justified. Perhaps surprisingly, the interplay between weak coupling, strong coupling and derivatives, which is controlled by symmetries, can override the naive expansion in operator dimension, providing instances where dimension-8 dominates dimension-6, well within the domain of validity of the low energy effective theory. This result reveals the limitations of an analysis that is both ambitiously general and restricted to dimension-6 operators.Comment: 37 pages, 1 figur

    (Re-)Inventing the Relativistic Wheel: Gravity, Cosets, and Spinning Objects

    Get PDF
    Space-time symmetries are a crucial ingredient of any theoretical model in physics. Unlike internal symmetries, which may or may not be gauged and/or spontaneously broken, space-time symmetries do not admit any ambiguity: they are gauged by gravity, and any conceivable physical system (other than the vacuum) is bound to break at least some of them. Motivated by this observation, we study how to couple gravity with the Goldstone fields that non-linearly realize spontaneously broken space-time symmetries. This can be done in complete generality by weakly gauging the Poincare symmetry group in the context of the coset construction. To illustrate the power of this method, we consider three kinds of physical systems coupled to gravity: superfluids, relativistic membranes embedded in a higher dimensional space, and rotating point-like objects. This last system is of particular importance as it can be used to model spinning astrophysical objects like neutron stars and black holes. Our approach provides a systematic and unambiguous parametrization of the degrees of freedom of these systems.Comment: 30 page

    High-resolution periodic mode shapes identification for wind turbines

    Get PDF
    The stability analysis of in-operation wind turbines is a very important topic, that has received considerable attention in the last years. Many identification algorithms have been developed to estimate frequencies and damping ratios, but very few papers have been dedicated to the mode shapes. The knowledge of high-resolution mode shapes could be exploited for several applications including model validation, accurate description of the vibratory content of a machine and spatially-accurate damage detection. In this work, we will present a procedure to compute the high-resolution periodic mode shapes of a wind turbine, and apply it to a high-fidelity wind turbine model. The results show that this methodology is able to identify the first low-damped modes of the system with good accuracy

    Phenotypic and genotypic data integration and exploration through a web-service architecture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linking genotypic and phenotypic information is one of the greatest challenges of current genetics research. The definition of an Information Technology infrastructure to support this kind of studies, and in particular studies aimed at the analysis of complex traits, which require the definition of multifaceted phenotypes and the integration genotypic information to discover the most prevalent diseases, is a paradigmatic goal of Biomedical Informatics. This paper describes the use of Information Technology methods and tools to develop a system for the management, inspection and integration of phenotypic and genotypic data.</p> <p>Results</p> <p>We present the design and architecture of the Phenotype Miner, a software system able to flexibly manage phenotypic information, and its extended functionalities to retrieve genotype information from external repositories and to relate it to phenotypic data. For this purpose we developed a module to allow customized data upload by the user and a SOAP-based communications layer to retrieve data from existing biomedical knowledge management tools. In this paper we also demonstrate the system functionality by an example application of the system in which we analyze two related genomic datasets.</p> <p>Conclusion</p> <p>In this paper we show how a comprehensive, integrated and automated workbench for genotype and phenotype integration can facilitate and improve the hypothesis generation process underlying modern genetic studies.</p

    Higgs Couplings in Composite Models

    Full text link
    We study Higgs couplings in the composite Higgs model based on the coset SO(5)/SO(4). We show that the couplings to gluons and photons are insensitive to the elementary-composite mixings and thus not affected by light fermionic resonances. Moreover, at leading order in the mixings the Higgs couplings to tops and gluons, when normalized to the Standard Model (SM), are equal. These properties are shown to be direct consequences of the Goldstone symmetry and of the assumption of partial compositeness. In particular, they are independent of the details of the elementary-composite couplings and, under the further assumption of CP invariance, they are also insensitive to derivative interactions of the Higgs with the composite resonances. We support our conclusions with an explicit construction where the SM fermions are embedded in the 14 dimensional representation of SO(5).Comment: 13 pages, 3 figures, 2 tables; v2: small improvements in the discussion, results unchanged; typos corrected; one reference added. Matches version submitted to PR

    What is the gamma gamma resonance at 750 GeV?

    Full text link
    Run 2 LHC data show hints of a new resonance in the diphoton distribution at an invariant mass of 750 GeV. We analyse the data in terms of a new boson, extracting information on its properties and exploring theoretical interpretations. Scenarios covered include a narrow resonance and, as preliminary indications suggest, a wider resonance. If the width indications persist, the new particle is likely to belong to a strongly-interacting sector. We also show how compatibility between Run 1 and Run 2 data is improved by postulating the existence of an additional heavy particle, whose decays are possibly related to dark matter.Comment: v2: 45 pages, 12 figures, final. Factor of 2 changed in table 1, 4th ro

    Periodic stability analysis of wind turbines operating in turbulent wind conditions

    Get PDF
    Abstract. The formulation is model-independent, in the sense that it does not require knowledge of the equations of motion of the periodic system being analyzed, and it is applicable to an arbitrary number of blades and to any configuration of the machine. In addition, as wind turbulence can be viewed as a stochastic disturbance, the method is also applicable to real wind turbines operating in the field. The characteristics of the new method are verified first with a simplified analytical model and then using a high-fidelity multi-body model of a multi-MW wind turbine. Results are compared with those obtained by the well-known operational modal analysis approach

    An automated reasoning framework for translational research

    Get PDF
    AbstractIn this paper we propose a novel approach to the design and implementation of knowledge-based decision support systems for translational research, specifically tailored to the analysis and interpretation of data from high-throughput experiments. Our approach is based on a general epistemological model of the scientific discovery process that provides a well-founded framework for integrating experimental data with preexisting knowledge and with automated inference tools.In order to demonstrate the usefulness and power of the proposed framework, we present its application to Genome-Wide Association Studies, and we use it to reproduce a portion of the initial analysis performed on the well-known WTCCC dataset. Finally, we describe a computational system we are developing, aimed at assisting translational research. The system, based on the proposed model, will be able to automatically plan and perform knowledge discovery steps, to keep track of the inferences performed, and to explain the obtained results

    On the wave equation on moving domains: regularity, energy balance and application to dynamic debonding

    Full text link
    We revisit some issues about existence and regularity for the wave equation in noncylindrical domains. Using a method of diffeomorphisms, we show how, through increasing regularity assumptions, the existence of weak solutions, their improved regularity and an energy balance can be derived. As an application, we give a rigorous definition of dynamic energy release rate density for some problems of debonding, and we formulate a proper notion of solution for such problems. We discuss the consistence of such formulation with previous ones, given in literature for particular cases.Comment: 36 page

    Multi-parameter perturbations for the space periodic heat equation

    Full text link
    This paper is divided into three parts. The first part focuses on periodic layer heat potentials, demonstrating their smooth dependence on regular perturbations of the support of integration. In the second part, we present an application of the results from the first part. Specifically, we consider a transmission problem for the heat equation in a periodic two-phase composite material and we show that the solution depends smoothly on the shape of the transmission interface, boundary data, and conductivity parameters. Finally, in the last part of the paper, we fix all parameters except for the contrast parameter and outline a strategy to deduce an explicit expansion of the solution using a Neumann-type series
    • …
    corecore