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Abstract. The stability analysis of in-operation wind turbines is a very important topic, that
has received considerable attention in the last years. Many identification algorithms have been
developed to estimate frequencies and damping ratios, but very few papers have been dedicated
to the mode shapes. The knowledge of high-resolution mode shapes could be exploited for
several applications including model validation, accurate description of the vibratory content of
a machine and spatially-accurate damage detection. In this work, we will present a procedure
to compute the high-resolution periodic mode shapes of a wind turbine, and apply it to a
high-fidelity wind turbine model. The results show that this methodology is able to identify the
first low-damped modes of the system with good accuracy.

1. Introduction
An in-operation wind turbine is qualitatively different from a parked one since its motion makes
it behave as a linear time-periodic (LTP) system. Many sources of periodicity can be listed as
an example. The gravity causes a periodic stiffening of each blade. The vertical and horizontal
wind shears periodically change the direction and magnitude of the aerodynamic loads. Advanced
control laws, like the individual pitch control, cyclically change the pitch of the blades, further
increasing the periodicity of the system. For these and other reasons, the stability analysis of
an in-operation wind turbine, subject to a steady wind, should be conducted within a periodic
framework, and hence by employing Floquet theory (see for example Ref. [1]).

The stability analysis of a wind turbine often aims at estimating only the frequencies and
damping ratios, but it is nevertheless important to compute also the periodic mode shapes, which
are typically used to justify the damping of certain modes or to compare models, as well as
simulation codes. Recently, they have been used also to construct a damage indicator based on
the loss of isotropy of the rotor [2].

To conduct the stability analysis, either model- or identification-based can be chosen. Among
the first category, the most used technique is the Coleman approximation. This technique is fast,
but introduces an error when the wind turbine is anisotropic. Moreover it cannot be applied
to two-bladed rotors. An alternative technique is the implicit Floquet, which can capture the
whole periodic content of the system but has a higher computational cost [3]. The majority of
identification algorithms can identify only single-output systems and hence are inadequate to
estimate the mode shapes with a high-resolution. The periodic mode shapes, of an in-operation

http://creativecommons.org/licenses/by/3.0
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wind turbine, have been identified in Refs. [4, 5], but with a low resolution. In Refs. [6, 7], Yang
identified the high-resolution mode shapes of wind turbine blades, but in those cases, the rotor
was parked. A recent modal analysis of a parked wind turbine is provided also in Ref. [8]. To
authors’ knowledge, the periodic mode shapes of an in-operation wind turbine have never been
identified with a high resolution, and in this paper, we will present a procedure to accomplish
this task.

In Sec. 2 we will illustrate the identification procedure and the algorithms on which it is based.
Sec. 3 will show a case study, and finally in Sec. 4 we will draw the conclusions.

2. Methodology
To identify the mode shapes of an in-operation wind turbine it is important to select an algorithm
capable of identifying periodic systems having a large number of measurement channels. For
this work, we have selected the Periodic PO-MOESP algorithm, originally presented by Felici
in Ref. [9]. This algorithm belongs to the subspace methods, which are particularly suited to
MIMO identification. The Periodic PO-MOESP can handle both process and measurement noises
but has two limitations. First, it can identify only systems operating in open-loop, and second,
it cannot capture the harmonics (n× Rev), that characterize every wind turbine output. The
first limitation makes it applicable only to stationary wind conditions, where the inputs of the
system can be frozen before starting the identification process. The inability to capture the
n × Rev requires instead a pre-processing step, aimed at removing these harmonics from the
output. In Ref. [9] the authors proposed this algorithm to identify non-autonomous systems,
assuming certain statistical properties of the inputs, which are hardly verified during a wind
turbine field experiment. We thus propose to excite the wind turbine modes using an arbitrary
impulse-like input sequence, remove the n×Rev from the output, and finally identify the system
after the application of the input, i.e. from its free response. It can be verified that the Periodic
PO-MOESP doesn’t require any modification to handle this case. The stability of the identified
system can be then assessed with the discrete-time Floquet theory.

In the subsequent part of this section, we will briefly explain the Periodic PO-MOESP, and
the discrete-time Floquet theory.

2.1. The Periodic PO-MOESP identification algorithm
Let us consider the following autonomous linear time-periodic system

x(k + 1) = A(k)x(k) + F (k)w(k), x(0) = x0, (1a)
y(k) = C(k)x(k) + v(k), (1b)

with x(k) ∈ RNs the state, and y(k) ∈ R` the output. v(k) ∈ R` is the measurement noise,
and w(k) ∈ Rr the process noise. Both v(k) and w(k) are by hypothesis zero-mean, white, and
uncorrelated with the initial state x0. The matrices A(k), F (k) and C(k) are all periodic with
discrete-time period K. We will now write this system in a form that is commonly used for
subspace identifications. To do so, we define the output array

ȳdk =
(
y(k)T y(k + 1)T · · · y(k + d− 1)T

)T ∈ R`d×1, (2)

and similarly the arrays w̄d
k ∈ Rrd×1 and v̄dk ∈ R`d×1 for the process and measurement noise. The

parameter d is named window size, and it must be K ≥ d > Ns. The observability matrix for an
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LTP system is defined as

Od
k =


C(k)

C(k + 1)Φ(k + 1, k)
C(k + 2)Φ(k + 2, k)

...
C(k + d− 1)Φ(k + d− 1, k)

 ∈ R`d×Ns . (3)

In the following we will assume that the system is observable for all k, over a length d, so that
Od
k has full column rank, i.e. rank(Od

k) = Ns. We then define

Edk =


0 0 · · · 0 0

Edk,2,1 0 · · · 0 0

Edk,3,1 Edk,3,2 · · · 0 0
...

...
. . . 0 0

Edk,d,1 Edk,d,2 · · · Edk,d,d−1 0

 ∈ R`d×rd, (4)

with Edk,i,j = C(k+ i−1)Φ(k+ i−1, k+j)F (k+j−1), for i = 2, . . . , d, j = 1, . . . , d−1 and i > j.
Because of the periodicity of the system, it can be verified that Od

k = Od
k+K and Edk = Edk+K ,

∀k ∈ {0, . . . , N̄ − 1}, with N̄ the number of periods. By making use of these definitions we can
see that

ȳdk = Od
kx(k) + Edkw̄d

k + v̄dk, ∀k ∈ [0, . . . , N − 1], (5)

with N = N̄K the number of samples. To get the output over all the periods we define the data
matrix

Ȳ i,d,N̄
k =

(
ȳdk+iK ȳdk+(i+1)K · · · ȳd

k+(i+N̄−1)K

)
∈ R`d×N̄ . (6)

Analogously we define V̄ i,d,N̄
k ∈ R`d×N̄ and W̄ i,d,N̄

k ∈ Rrd×N̄ for the process and measurement
noise. For the state we introduce

X̄i,N̄
k =

(
x(k + iK) x(k + (i+ 1)K) · · · x(k + (i+ N̄ − 1)K)

)
∈ RNs×N̄ , (7)

so that the output can finally be computed as

Ȳ i,d,N̄
k = Od

kX̄
i,N̄
k + EdkW̄

i,d,N̄
k + V̄ i,d,N̄

k , ∀k ∈ [0, . . . ,K − 1]. (8)

The Periodic PO-MOESP aims at identifying the observability matrix by exploiting the data
matrix. In Ref. [9] it is proved that if

rank

(
lim
N̄→∞

1

N̄
X̄0,N̄
k+K−d

)
= Ns, and rank

(
lim
N̄→∞

1

N̄
X̄1,N̄
k (Ȳ 0,d,N̄

k+K−d)
T

)
= Ns (9)

then it holds that
range

(
lim
N̄→∞

1

N̄
Ȳ 1,d,N̄
k (Ȳ 0,d,N̄

k+K−d)
T

)
= range(Od

k). (10)

These equations show that if the state has been properly excited, then the range of the observability
matrix equals the one of the matrix in the left hand side of Eq. (10). As done in Ref. [9], rather
then computing the matrix product in Eq. (10), we perform the following LQ decompositionȲ 0,d,N̄

k+K−d

Ȳ 1,d,N̄
k

 =

(
Lk11 0

Lk21 Lk22

)(
Qk1

Qk2

)
, (11)
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in which the factors Lk11 , Lk21 and Lk22 have size d`× d`, while Qk1 and Qk2 have size d`× N̄ .
In Ref. [9] it is proved that

range

(
lim
N̄→∞

1√
N̄
Lk21

)
= range

(
Od
k

)
. (12)

The range of the observability matrix is then obtained by computing the Singular Value
Decomposition of Lk21

Lk21 = Uk diag(σk)V
T
k . (13)

The order of the system can be estimated for each k by looking at a possible gap in the singular
values σk, while the first Ns columns of Uk provide the desired range. To compute the LQ
decomposition of Eq. (11), it is required that N̄ ≥ 2d`. Often this condition requires to measure
the system for a very long time. It is however possible to measure the system till its free response
has vanished, and then simply zero-pad the measures. In this way the measurement time is
dictated by the physics of the system, rather than by the identification algorithm. The side effect
of this technique, is that the elements of σk after the last measured period assume the value of
the machine ε.

The matrices of the system are obtained by exploiting the structure of the observability matrix.
The first ` rows of the observability matrix are simply the output matrix. Therefore, by indicating
with M(i :j, :) the selection from row i to row j of matrix M , we can write

C̃(k) = Uk(1 :`, :), ∀k ∈ [0, . . . ,K − 1]. (14)

The A(k) matrix is instead found by solving

Uk+1(1 :`(d− 1), :)Ak = Uk(`+ 1:`d, :), ∀k ∈ [0, . . . ,K − 1], (15)

in the least-squares sense. Lastly, we write Eq. (5) at the initial time, to get the initial state.
Since both noises are by hypothesis white, we can omit them, and write

ȳd0 = Od
0x0. (16)

We thus have
x0 = U0(:, 1:Ns)

†ȳd0 , (17)

where M(:, k : l) indicates the selection from column k to column l, and (·)† is the matrix
pseudoinverse.

2.2. Stability analysis of linear discrete-time periodic systems
The stability analysis of system (1) is performed by applying Floquet theory, see Ref. [1, 10], and
in this paragraph we will provide a concise review of it.

The motion of x(k), and hence the stability of a periodic system, is governed by the state
transition matrix Φ(k, κ) which evolves according to

Φ(k + 1, κ) = A(k)Φ(k, κ), Φ(κ, κ) = I, (18)

with I the identity matrix. By sampling the state at every period, we can see that its motion is
governed by the monodromy matrix Ψκ = Φ(κ + K,κ). The eigenvalues θj of Ψκ are termed
characteristic multipliers, and the system is asymptotically stable if they lie within the open unit
disk, i.e. if

|θj | < 1, ∀j ∈ [1, . . . , Ns]. (19)
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By neglecting the noise, the output of system (1) can be computed as

y(k) = C(k)Φ(k, κ)x(κ), (20)

where C(k)Φ(k, κ) is named observed state transition matrix. It can be proved that the modal
decomposition of this matrix is given by

C(k)Φ(k, κ) =

Ns∑
j=1

K−1∑
n=0

ψjn%
T
j (κ) (ηjn)k−κ eın

2π
K
κ, (21)

with
ηjn = K

√
|θj | exp

(
ı
∠(θj) + 2nπ

K

)
(22)

and ı =
√
−1. Equation (21) shows that each mode j is characterized by K harmonics, composed

by the characteristic exponents ηjn , and by the associated observed periodic mode shapes ψjn .
To asses the relative importance of each harmonic within a specified mode, we introduce the
output-specific participation factor

φjn =
‖ψjn‖2∑
n‖ψjn‖2

. (23)

When selecting as reference frame the multi-blade coordinates, the harmonic with the highest φjn
is labeled principal. The characteristic exponents play the same role of the eigenvalues of a linear
time-invariant system, and can be converted in continuous time with

ηcont.
jn =

1

∆t
ln(ηjn) (24)

where ∆t is the time step. The natural frequencies fjn and damping ratios ξjn are obtained as

fjn =
|ηcont.
jn
|

2π
, ξjn = −

Re(ηcont.
jn

)

|ηcont.
jn
|
. (25)

3. Application to the AVATAR wind turbine
The proposed procedure has been applied to a 10 MW, low induction rotor, wind turbine, developed
within an European project AVATAR [11, 12]. The wind turbine has been modeled with the
Cp-Lambda code [13], an aero-servo-elastic code based on a multi-body formulation. The beam
model is geometrically exact, with a fully-populated stiffness matrix, able to correctly capture
the behavior of modern, composite-made, wind turbine blades. The aerodynamics is rendered
through the classical blade-element momentum theory, with the quasi-steady approximation. The
aerodynamic model includes tip and hub losses and the tower shadow. To identify the system
20 displacement sensors have been applied on each blade, in order to measure the edgewise
displacement relative to the root. Moreover, other 20 sensors have been considered on the tower,
to get the side-side displacement. During a real experiment, the displacements might be measured
with the stereo photometry, as described, for instance, in Ref. [14].

To simulate the system we have applied a Normal Wind Profile, with a vertical wind shear
exponent of 0.20 and a speed at the hub height of 13 m/s. After the system reached a trim
condition, the pitch and torque have been frozen, so as to simulate an open-loop system.
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3.1. Identification of the tower side-side mode
To identify the tower side-side mode, we have applied a force at the tower top, in the side-
side direction. The force had the trend of a doublet, with a duration tuned to excite the
principal harmonic of this mode. To ease the identification process we have applied the Coleman
transformation (see Ref. [10]), which had a two-fold effect. First it filtered all the n × Rev
where n is not a multiple of 3, while the second is that in multi-blade coordinates this mode is
characterized almost exclusively by its principal harmonic. In this way we have been able to
do a more aggressive pre-processing, to better remove the remaining n × Rev as well as some
high-frequency oscillations.

The singular values revealed that the rank of the observability matrix is constant over the
period, and equal to 2, therefore we set Ns = 2. By a trial and error approach we have set
the window size d equal to the discrete-time period, so that no information is discarded. The
measures in the physical frame are retrieved by applying the inverse Coleman transformation to
the C(k) matrix.

Table 1 lists the identified frequencies and damping ratios, with the associated output-specific
participation factors. The participation factors indicate that this mode manifests only with its
principal harmonic in the fixed frame, of which we show the mode shape, observed on the tower,
in the central column of Fig. 1. Instead, in the rotating frame this mode manifests with the ±Ω
harmonics. The mode shapes of these harmonics, observed on the blades, are shown in the left
and right columns of Fig. 1. Eq. (21) shows that for periodic systems the scaling factor of the
mode shapes depends only on the mode, and not on the harmonic. Hence, in all the figures we
have normalized to 1 the maximum displacement among all the harmonics, and scaled the other
harmonics accordingly. As we can see, the +Ω harmonic is the least damped, and is experienced
by the blades. Moreover, the mode shapes of the blades have the same magnitude, with phases
constant along the span, and separated by about 120°.

Table 1: Frequencies, damping ratios, and output-specific participation factors of the tower
side-side mode.

Harmonic Frequency Damping Participation
(Hz) (−) Tower top Blade 1 tip

−1Ω 0.063 0.0253 0.0001 0.4638
Principal 0.223 0.0072 0.9953 0.0082

+1Ω 0.383 0.0042 0.0012 0.5020

3.2. Identification of the edgewise collective mode
For this identification we have applied a torque to the shaft. The torque had the trend of a
doublet, with a duration tuned to excite mainly the principal harmonic of this mode. For this
mode the motion of the tower is very limited, therefore we have excluded its signals from the
identification. In this case, we have chosen to keep the measures in the rotating frame, since the
Coleman transformation is not appropriate for this mode. We have then removed the n× Rev,
and applied a high-pass filter, to clean the spectrum below 1.4 Hz.

The identified frequencies and damping ratios are listed in Tab. 2. The participation factors
reveal that only the principal harmonic is important to describe this mode, and we show its mode
shape in Fig. 2. Once again, the mode shapes of the blade have the same magnitude, but in this
case also the phases are equal, coherently with the definition of collective mode.
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Figure 1: Observed periodic mode shapes of the tower side-side mode.

Table 2: Frequencies, damping ratios, and output-specific participation factors of the edgewise
collective mode.

Harmonic Frequency Damping Participation
(Hz) (−) Blade 1 tip

−1Ω 1.487 0.0407 0.0095
Principal 1.647 0.0368 0.8181

+1Ω 1.806 0.0335 0.0042

3.3. Identification of the edgewise whirling modes
The last identification concerned the edgewise whirling modes. In this case we have applied three
concentrated forces at the tip of the blades. Each force was orthogonal to the associated blade
axis, and lied in the rotor plane. The forces had different magnitude and start time, but they
all had the trend of a doublet, tuned to excite the whirling modes as observed in the rotating
frame. This type of forcing not only excites the edgewise whirling modes, but also the collective
edgewise and the tower side-side modes, although the latter is not visible on the blades.

In Ref. [15] it is explained that the whirling modes respond with the same frequency when
they are observed in the rotating frame, and with two different ones when observed in multi-
blade coordinates. Therefore, to facilitate the identification, we have applied the Coleman
transformation. The Periodic PO-MOESP allowed to identify a system that incorporates all of
these modes, except for the collective edgewise.

Tab. 3 lists the identified frequencies and damping ratios, along with the associated output-
specific participation factors, of the edgewise backward whirling mode. The participation factors
indicate that the principal harmonic is observed on the tower, of which we draw the mode shape



8

1234567890 ‘’“”

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 062002  doi :10.1088/1742-6596/1037/6/062002

0 0.25 0.5 0.75 1

Magnitude (-)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
la

d
e 

sp
an

 (
-)

Blade 1
Blade 2
Blade 3

-180 -120 -60 0 60 120 180

Phase (deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
la

d
e 

sp
an

 (
-)

Figure 2: Observed periodic mode shape of the principal harmonic of the edgewise collective
mode.

in the left column of Fig. 3. On the blades it is instead observed the +Ω harmonic, whose
mode shape is shown in the right column of Fig. 3. As discussed in Ref. [3], for the whirling
modes the phases of the blades are constant along the span, and separated by about 120°. In the
Campbell diagram often it is shown only the principal harmonic, however, the ample difference in
displacement among the blades and tower indicates that the most important harmonic for this
mode is the +Ω.

Table 3: Frequencies, damping ratios, and output-specific participation factors of the edgewise
backward whirling mode.

Harmonic Frequency Damping Participation
(Hz) (−) Tower top Blade 1 tip

−1Ω 0.5738 0.0301 0.0009 0.0196
Principal 0.7337 0.0235 0.7674 0.0034

+1Ω 0.8937 0.0193 0.0012 0.8025

Analogous considerations apply for the edgewise forward whirling mode. The results for its
identification are shown in Tab. 4 and Fig. 4.

Table 4: Frequencies, damping ratios, and output-specific participation factors of the edgewise
forward whirling mode.

Harmonic Frequency Damping Participation
(Hz) (−) Tower top Blade 1 tip

−1Ω 0.8924 0.0308 0.0044 0.3409
Principal 1.0523 0.0261 0.3905 0.0042

+1Ω 1.2122 0.0226 0.0070 0.0044
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Figure 3: Observed periodic mode shapes of the edgewise backward whirling mode.
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Figure 4: Observed periodic mode shapes of the edgewise forward whirling mode.
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4. Conclusion
In this paper, we have presented a procedure to identify high-resolution periodic mode shapes of
an in-operation wind turbine. The procedure relies on the Periodic PO-MOESP identification
algorithm, which we have specifically tailored for this purpose. This algorithm produces a reduced
order model, whose stability is assessed by the discrete-time Floquet theory, this way considering
the whole periodic content of the system. The procedure, being based on system identification, is
model-independent and applicable to any simulation model of arbitrary complexity.

As a case study, we have conducted virtual experiments, to estimate the mode shapes of the
AVATAR wind turbine. In particular, we have identified the first low-damped modes of the
system with good accuracy. The results include the most important harmonics for each mode
and show that the least-damped harmonic might not be the one usually shown in a Campbell
diagram.

The methodology proposed in this work allows one to better compare different models and
simulation codes. Future works will concern the inclusion of control system and turbulence in the
identification process, so as to make it applicable to more realistic scenarios.
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