19 research outputs found

    IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity

    Get PDF
    Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function 1?4 . However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer?an aggressive malignancy that is refractory to standard treatments and current immunotherapies 5?8 ?induces endoplasmic reticulum stress and activates the IRE1α?XBP1 arm of the unfolded protein response 9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α?XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α?XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α?XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts.Fil: Song, Minkyung. Weill Cornell Medicine; Estados UnidosFil: Sandoval, Tito A.. Weill Cornell Medicine; Estados UnidosFil: Chae, Chang-Suk. Weill Cornell Medicine; Estados UnidosFil: Chopra, Sahil. Weill Cornell Medicine; Estados UnidosFil: Tan, Chen. Weill Cornell Medicine; Estados UnidosFil: Rutkowski, Melanie R.. University of Virginia; Estados UnidosFil: Raundhal, Mahesh. Dana Farber Cancer Institute; Estados Unidos. Harvard Medical School; Estados UnidosFil: Chaurio, Ricardo A.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Payne, Kyle K.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Konrad, Csaba. Weill Cornell Medicine; Estados UnidosFil: Bettigole, Sarah E.. Quentis Therapeutics Inc.; Estados UnidosFil: Shin, Hee Rae. Quentis Therapeutics Inc.; Estados UnidosFil: Crowley, Michael J. P.. Weill Cornell Graduate School of Medical Sciences; Estados UnidosFil: Cerliani, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kossenkov, Andrew V.. The Wistar Institute; Estados UnidosFil: Motorykin, Ievgen. Weill Cornell Medicine,; Estados UnidosFil: Zhang, Sheng. Weill Cornell Medicine,; Estados UnidosFil: Manfredi, Giovanni. Weill Cornell Medicine,; Estados UnidosFil: Zamarin, Dmitriy. Memorial Sloan Kettering Cancer Center; Estados UnidosFil: Holcomb, Kevin. Weill Cornell Medicine,; Estados UnidosFil: Rodriguez, Paulo C.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Conejo Garcia, Jose R.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Glimcher, Laurie H.. Dana Farber Cancer Institute; Estados Unidos. Harvard Medical School; Estados UnidosFil: Cubillos-Ruiz, Juan R.. Weill Graduate School Of Medical Sciences; Estados Unidos. Weill Graduate School Of Medical Sciences; Estados Unido

    Phospholipids: Key Players in Apoptosis and Immune Regulation

    No full text
    Phosphatidylserine (PS), a phospholipid predominantly found in the inner leaflet of eukaryotic cellular membranes, plays important roles in many biological processes. During apoptosis, the asymmetric distribution of phospholipids of the plasma membrane gets lost and PS is translocated to the outer leaflet of the plasma membrane. There, PS acts as one major “eat me” signal that ensures efficient recognition and uptake of apoptotic cells by phagocytes. PS recognition of activated phagocytes induces the secretion of anti-inflammatory cytokines like interleukin-10 and transforming grow factor-beta. Deficiencies in the clearance of apoptotic cells result in the occurrence of secondarily necrotic cells. The latter have lost the membrane integrity and release immune activating danger signals, which may induce inflammatory responses. Accumulation of dead cells containing nuclear autoantigens in sites of immune selection may provide survival signals for autoreactive B-cells. The production of antibodies against nuclear structures determines the initiation of chronic autoimmunity in systemic lupus erythematosus. Since PS on apoptotic cells is an important modulator of the immune response, natural occurring ligands for PS like annexinA5 have profound effects on immune responses against dead and dying cells, including tumour cells. In this review we will focus on the role of PS exposure in the clearance process of dead cells and its implications in clinical situations where apoptosis plays a relevant role, like in cancer, chronic autoimmunity, and infections. Relevance of other phospholipids during the apoptosis process is also discussed

    Evolution of the Transmission-Blocking Vaccine Candidates Pvs28 and Pvs25 in Plasmodium vivax: Geographic Differentiation and Evidence of Positive Selection.

    No full text
    Transmission-blocking (TB) vaccines are considered an important tool for malaria control and elimination. Among all the antigens characterized as TB vaccines against Plasmodium vivax, the ookinete surface proteins Pvs28 and Pvs25 are leading candidates. These proteins likely originated by a gene duplication event that took place before the radiation of the known Plasmodium species to primates. We report an evolutionary genetic analysis of a worldwide sample of pvs28 and pvs25 alleles. Our results show that both genes display low levels of genetic polymorphism when compared to the merozoite surface antigens AMA-1 and MSP-1; however, both ookinete antigens can be as polymorphic as other merozoite antigens such as MSP-8 and MSP-10. We found that parasite populations in Asia and the Americas are geographically differentiated with comparable levels of genetic diversity and specific amino acid replacements found only in the Americas. Furthermore, the observed variation was mainly accumulated in the EGF2- and EGF3-like domains for P. vivax in both proteins. This pattern was shared by other closely related non-human primate parasites such as Plasmodium cynomolgi, suggesting that it could be functionally important. In addition, examination with a suite of evolutionary genetic analyses indicated that the observed patterns are consistent with positive natural selection acting on Pvs28 and Pvs25 polymorphisms. The geographic pattern of genetic differentiation and the evidence for positive selection strongly suggest that the functional consequences of the observed polymorphism should be evaluated during development of TBVs that include Pvs25 and Pvs28

    Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors

    Get PDF
    IntroductionMany antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells.MethodsCultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS) in the presence of dead and dying cells, their supernatants (SNs), or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo.ResultsThe stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment.ConclusionInosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy

    Positively selected codons detected in <i>pvs28</i> and <i>pvs25</i> using random effects likelihood (REL) method as implemented in HyPhy.

    No full text
    <p>The estimated dN-dS (E[dN-dS]) per codon across the <i>pvs28</i> and <i>pvs25</i> genes are depicted against their position using Salvador I as a reference (see <a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0004786#pntd.0004786.s001" target="_blank">S1</a> and <a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0004786#pntd.0004786.s002" target="_blank">S2</a> Tables). Schematic diagrams of Pvs28 and Pvs25 indicate their EGF domains. <i>Pvs28</i> codons 52, 113, and 116 yield Bayes factors (BF) of 97.69, 101.51, and 367.92 respectively, indicating that the data provided strong evidence for positive selection. Codons 52, 65, 95, 98, and 123 for Pvs28 and 35, 97, 130, 132, and 135 for <i>pvs25</i> have BF higher than 10 but lower than 50, indicating that the data provided some evidence for positive selection acting at those codons. The LCR of <i>pvs28</i> was not included in this analysis.</p

    Median joining network of the <i>P</i>. <i>vivax pvs28</i> haplotypes sampled two or more times plus selected singleton haplotypes.

    No full text
    <p>Branch lengths are proportional to divergence; node sizes are proportional to the total haplotype frequencies. The network shows 63 haplotypes found in 284 sequences with a haplotype diversity of 0.765. The most frequent haplotypes are indicated. Every color corresponds to a different geographic origin. Lines separating haplotypes represent mutational steps.</p
    corecore