91 research outputs found

    Light microclimate-driven changes at transcriptional level in photosynthetic grape berry tissues

    Get PDF
    Viticulture practices that change the light distribution in the grapevine canopy can interfere with several physiological mechanisms, such as grape berry photosynthesis and other metabolic pathways, and consequently impact the berry biochemical composition, which is key to the final wine quality. We previously showed that the photosynthetic activity of exocarp and seed tissues from a white cultivar (Alvarinho) was in fact responsive to the light microclimate in the canopy (low and high light, LL and HL, respectively), and that these different light microclimates also led to distinct metabolite profiles, suggesting a berry tissue-specific interlink between photosynthesis and metabolism. In the present work, we analyzed the transcript levels of key genes in exocarps and seed integuments of berries from the same cultivar collected from HL and LL microclimates at three developmental stages, using real-time qPCR. In exocarp, the expression levels of genes involved in carbohydrate metabolism (VvSuSy1), phenylpropanoid (VvPAL1), stilbenoid (VvSTS1), and flavan-3-ol synthesis (VvDFR, VvLAR2, and VvANR) were highest at the green stage. In seeds, the expression of several genes associated with both phenylpropanoid (VvCHS1 and VvCHS3) and flavan-3-ol synthesis (VvDFR and VvLAR2) showed a peak at the véraison stage, whereas that of RuBisCO was maintained up to the mature stage. Overall, the HL microclimate, compared to that of LL, resulted in a higher expression of genes encoding elements associated with both photosynthesis (VvChlSyn and VvRuBisCO), carbohydrate metabolism (VvSPS1), and photoprotection (carotenoid pathways genes) in both tissues. HL also induced the expression of the VvFLS1 gene, which was translated into a higher activity of the FLS enzyme producing flavonol-type flavonoids, whereas the expression of several other flavonoid pathway genes (e.g., VvCHS3, VvSTS1, VvDFR, and VvLDOX) was reduced, suggesting a specific role of flavonols in photoprotection of berries growing in the HL microclimate. This work suggests a possible link at the transcriptional level between berry photosynthesis and pathways of primary and secondary metabolism, and provides relevant information for improving the management of the light microenvironment at canopy level of the grapes.This research and the APC was funded by FCT—Portuguese Foundation for Science and Technology, grant provided to Andreia Garrido (PD/BD/128275/2017), under the Doctoral Programme “Agricultural Production Chains—from fork to farm” (PD/00122/2012), and by the European Social Funds and the Regional Operational Programme Norte 2020.info:eu-repo/semantics/publishedVersio

    Metabolomics of photosynthetically active tissues in white grapes: effects of light microclimate and stress mitigation strategies

    Get PDF
    The effects of climate change are becoming a real concern for the viticulture sector, with impacts on both grapevine physiology and the quality of the fresh berries and wine. Short-term mitigation strategies, like foliar kaolin application and smart irrigation regimes, have been implemented to overcome these problems. We previously showed that these strategies also influence the photosynthetic activity of the berries themselves, specifically in the exocarp and seed. In the present work, we assessed the modulating effects of both canopy-light microclimate, kaolin and irrigation treatments on the metabolic profiles of the exocarp and seed, as well as the potential role of berry photosynthesis herein. Berries from the white variety Alvarinho were collected at two contrasting light microclimate positions within the vine canopy (HLhigh light and LLlow light) from both irrigated and kaolin-treated plants, and their respective controls, at three fruit developmental stages (green, véraison and mature). Untargeted liquid chromatography mass spectrometry (LCMS) profiling of semi-polar extracts followed by multivariate statistical analysis indicate that both the light microclimate and irrigation influenced the level of a series of phenolic compounds, depending on the ripening stage of the berries. Moreover, untargeted gas chromatography mass spectrometry (GCMS) profiling of polar extracts show that amino acid and sugar levels were influenced mainly by the interaction of irrigation and kaolin treatments. The results reveal that both photosynthetically active berry tissues had a distinct metabolic profile in response to the local light microclimate, which suggests a specific role of photosynthesis in these tissues. A higher light intensity within the canopy mainly increased the supply of carbon precursors to the phenylpropanoid/flavonoid pathway, resulting in increased levels of phenolic compounds in the exocarp, while in seeds, light mostly influenced compounds related to carbon storage and seed development. In addition, our work provides new insights into the influence of abiotic stress mitigation strategies on the composition of exocarps and seeds, which are both important tissues for the quality of grape-derived products.This research and APC were funded by the FCT-Portuguese Foundation for Science and Technology, grant provided to Andreia Garrido (PD/BD/128275/2017), under the Doctoral Program "Agricultural Production Chains-from fork to farm" (PD/00122/2012).info:eu-repo/semantics/publishedVersio

    The patterns of population differentiation in a Brassica rapa core collection

    Get PDF
    With the recent advances in high throughput profiling techniques the amount of genetic and phenotypic data available has increased dramatically. Although many genetic diversity studies combine morphological and genetic data, metabolite profiling has yet to be integrated into these studies. For our study we selected 168 accessions representing the different morphotypes and geographic origins of Brassica rapa. Metabolite profiling was performed on all plants of this collection in the youngest expanded leaves, 5 weeks after transplanting and the same material was used for molecular marker profiling. During the same season a year later, 26 morphological characteristics were measured on plants that had been vernalized in the seedling stage. The number of groups and composition following a hierarchical clustering with molecular markers was highly correlated to the groups based on morphological traits (r = 0.420) and metabolic profiles (r = 0.476). To reveal the admixture levels in B. rapa, comparison with the results of the programme STRUCTURE was needed to obtain information on population substructure. To analyze 5546 metabolite (LC–MS) signals the groups identified with STRUCTURE were used for random forests classification. When comparing the random forests and STRUCTURE membership probabilities 86% of the accessions were allocated into the same subgroup. Our findings indicate that if extensive phenotypic data (metabolites) are available, classification based on this type of data is very comparable to genetic classification. These multivariate types of data and methodological approaches are valuable for the selection of accessions to study the genetics of selected traits and for genetic improvement programs, and additionally provide information on the evolution of the different morphotypes in B. rapa. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-010-1516-1) contains supplementary material, which is available to authorized users

    Comparative Methods for Association Studies: A Case Study on Metabolite Variation in a Brassica rapa Core Collection

    Get PDF
    Background Association mapping is a statistical approach combining phenotypic traits and genetic diversity in natural populations with the goal of correlating the variation present at phenotypic and allelic levels. It is essential to separate the true effect of genetic variation from other confounding factors, such as adaptation to different uses and geographical locations. The rapid availability of large datasets makes it necessary to explore statistical methods that can be computationally less intensive and more flexible for data exploration. Methodology/Principal Findings A core collection of 168 Brassica rapa accessions of different morphotypes and origins was explored to find genetic association between markers and metabolites: tocopherols, carotenoids, chlorophylls and folate. A widely used linear model with modifications to account for population structure and kinship was followed for association mapping. In addition, a machine learning algorithm called Random Forest (RF) was used as a comparison. Comparison of results across methods resulted in the selection of a set of significant markers as promising candidates for further work. This set of markers associated to the metabolites can potentially be applied for the selection of genotypes with elevated levels of these metabolites. Conclusions/Significance The incorporation of the kinship correction into the association model did not reduce the number of significantly associated markers. However incorporation of the STRUCTURE correction (Q matrix) in the linear regression model greatly reduced the number of significantly associated markers. Additionally, our results demonstrate that RF is an interesting complementary method with added value in association studies in plants, which is illustrated by the overlap in markers identified using RF and a linear mixed model with correction for kinship and population structure. Several markers that were selected in RF and in the models with correction for kinship, but not for population structure, were also identified as QTLs in two bi-parental DH populations

    Novel chemistry of invasive plants: exotic species have more unique 1 metabolomic profiles than native congeners 2 3

    Get PDF
    and their native congeners of the family Asteraceae. Our results showed that plant chemistry is 51 highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic 52 species had on average a higher total number of metabolites and more species-unique 53 metabolites compared to their native congeners. Herbivory led to an overall increase of 54 metabolites in all plant species. Generalist herbivore performance was lower on most of the 55 exotic species compared to the native species. We conclude that high chemical diversity and 56 large phytochemical uniqueness of the exotic species could be indicative of biological invasion 57 potential

    Regulatory network of secondary metabolism in Brassica rapa:insight into the glucosinolate pathway

    Get PDF
    Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables

    Control of anthocyanin and non-flavonoid compounds by anthocyanin-regulating MYB and bHLH transcription factors in Nicotiana benthamiana leaves

    Get PDF
    Coloration of plant organs such as fruit, leaves and flowers through anthocyanin production is governed by a combination of MYB and bHLH type transcription factors (TFs). In this study we introduced Rosea1 (ROS1, a MYB type) and Delila (DEL, a bHLH type), into Nicotiana benthamiana leaves by agroinfiltration. ROS1 and DEL form a pair of well-characterized TFs from Snapdragon (Antirrhinum majus), which specifically induce anthocyanin accumulation when expressed in tomato fruit. In N. benthamiana, robust induction of a single anthocyanin, delphinidin-3-rutinoside (D3R) was observed after expression of both ROS1 and DEL. Surprisingly in addition to D3R, a range of additional metabolites were also strongly and specifically up-regulated upon expression of ROS1 and DEL. Except for the D3R, these induced compounds were not derived from the flavonoid pathway. Most notable among these are nornicotine conjugates with butanoyl, hexanoyl, and octanoyl hydrophobic moieties, and phenylpropanoid-polyamine conjugates such as caffeoyl putrescine. The defensive properties of the induced molecules were addressed in bioassays using the tobacco specialist lepidopteran insect Manduca sexta. Our study showed that the effect of ROS1 and DEL expression in N. benthamiana leaves extends beyond the flavonoid pathway. Apparently the same transcription factor may regulate different secondary metabolite pathways in different plant species

    Unravelling enzymatic discoloration in potato through a combined approach of candidate genes, QTL, and expression analysis

    Get PDF
    Enzymatic discoloration (ED) of potato tubers was investigated in an attempt to unravel the underlying genetic factors. Both enzyme and substrate concentration have been reported to influence the degree of discoloration and as such this trait can be regarded as polygenic. The diploid mapping population C × E, consisting of 249 individuals, was assayed for the degree of ED and levels of chlorogenic acid and tyrosine. Using this data, Quantitative Trait Locus (QTL) analysis was performed. Three QTLs for ED have been found on parental chromosomes C3, C8, E1, and E8. For chlorogenic acid a QTL has been identified on C2 and for tyrosine levels, a QTL has been detected on C8. None of the QTLs overlap, indicating the absence of genetic correlations between these components underlying ED, in contrast to earlier reports in literature. An obvious candidate gene for the QTL for ED on Chromosome 8 is polyphenol oxidase (PPO), which was previously mapped on chromosome 8. With gene-specific primers for PPO gene POT32 a CAPS marker was developed. Three different alleles (POT32-1, -2, and -3) could be discriminated. The segregating POT32 alleles were used to map the POT32 CAPS marker and QTL analysis was redone, showing that POT32 coincides with the QTL peak. A clear correlation between allele combinations and degree of discoloration was observed. In addition, analysis of POT32 gene expression in a subset of genotypes indicated a correlation between the level of gene expression and allele composition. On average, genotypes having two copies of allele 1 had both the highest degree of discoloration as well as the highest level of POT32 gene expression

    Reconstitution of the Costunolide Biosynthetic Pathway in Yeast and Nicotiana benthamiana

    Get PDF
    The sesquiterpene costunolide has a broad range of biological activities and is the parent compound for many other biologically active sesquiterpenes such as parthenolide. Two enzymes of the pathway leading to costunolide have been previously characterized: germacrene A synthase (GAS) and germacrene A oxidase (GAO), which together catalyse the biosynthesis of germacra-1(10),4,11(13)-trien-12-oic acid. However, the gene responsible for the last step toward costunolide has not been characterized until now. Here we show that chicory costunolide synthase (CiCOS), CYP71BL3, can catalyse the oxidation of germacra-1(10),4,11(13)-trien-12-oic acid to yield costunolide. Co-expression of feverfew GAS (TpGAS), chicory GAO (CiGAO), and chicory COS (CiCOS) in yeast resulted in the biosynthesis of costunolide. The catalytic activity of TpGAS, CiGAO and CiCOS was also verified in planta by transient expression in Nicotiana benthamiana. Mitochondrial targeting of TpGAS resulted in a significant increase in the production of germacrene A compared with the native cytosolic targeting. When the N. benthamiana leaves were co-infiltrated with TpGAS and CiGAO, germacrene A almost completely disappeared as a result of the presence of CiGAO. Transient expression of TpGAS, CiGAO and CiCOS in N. benthamiana leaves resulted in costunolide production of up to 60 ng.g−1 FW. In addition, two new compounds were formed that were identified as costunolide-glutathione and costunolide-cysteine conjugates
    corecore