402 research outputs found

    Modular curves and N\'eron models of generalized Jacobians

    Full text link
    Let XX be a smooth geometrically connected projective curve over the field of fractions of a discrete valuation ring RR, and m\mathfrak{m} a modulus on XX, given by a closed subscheme of XX which is geometrically reduced. The generalized Jacobian JmJ_\mathfrak{m} of XX with respect to m\mathfrak{m} is then an extension of the Jacobian of XX by a torus. We describe its N\'eron model, together with the character and component groups of the special fibre, in terms of a regular model of XX over RR. This generalizes Raynaud's well-known description for the usual Jacobian. We also give some computations for generalized Jacobians of modular curves X0(N)X_0(N) with moduli supported on the cusps.Comment: 36 pages, minor corrections and references added. Accepted version, to appear in Compositio Mat

    Quantum well infrared photodetectors hardiness to the non ideality of the energy band profile

    Full text link
    We report results on the effect of a non-sharp and disordered potential in Quantum Well Infrared Photodetectors (QWIP). Scanning electronic transmission microscopy is used to measure the alloy profile of the structure which is shown to present a gradient of composition along the growth axis. Those measurements are used as inputs to quantify the effect on the detector performance (peak wavelength, spectral broadening and dark current). The influence of the random positioning of the doping is also studied. Finally we demonstrate that QWIP properties are quite robust with regard to the non ideality of the energy band profile

    Numerical evidence toward a 2-adic equivariant ''Main Conjecture''

    No full text
    International audienceWe test a conjectural non abelian refinement of the classical 2-adic Main Conjecture of Iwasawa theory. In the first part, we show how, in the special case that we study, the validity of this refinement is equivalent to a congruence condition on the coefficients of some power series. Then, in the second part, we explain how to compute the first coefficients of this power series and thus numerically check the conjecture in that setting

    Completed cohomology of Shimura curves and a p-adic Jacquet-Langlands correspondence

    Full text link
    We study indefinite quaternion algebras over totally real fields F, and give an example of a cohomological construction of p-adic Jacquet-Langlands functoriality using completed cohomology. We also study the (tame) levels of p-adic automorphic forms on these quaternion algebras and give an analogue of Mazur's `level lowering' principle.Comment: Updated version. Contains some minor corrections compared to the published versio

    Endomorphisms of superelliptic jacobians

    Full text link
    Let K be a field of characteristic zero, n>4 an integer, f(x) an irreducible polynomial over K of degree n, whose Galois group is doubly transitive simple non-abelian group. Let p be an odd prime, Z[\zeta_p] the ring of integers in the p-th cyclotomic field, C_{f,p}:y^p=f(x) the corresponding superelliptic curve and J(C_{f,p}) its jacobian. Assuming that either n=p+1 or p does not divide n(n-1), we prove that the ring of all endomorphisms of J(C_{f,p}) coincides with Z[\zeta_p].Comment: Several typos have been correcte

    Denominators of Eisenstein cohomology classes for GL_2 over imaginary quadratic fields

    Full text link
    We study the arithmetic of Eisenstein cohomology classes (in the sense of G. Harder) for symmetric spaces associated to GL_2 over imaginary quadratic fields. We prove in many cases a lower bound on their denominator in terms of a special L-value of a Hecke character providing evidence for a conjecture of Harder that the denominator is given by this L-value. We also prove under some additional assumptions that the restriction of the classes to the boundary of the Borel-Serre compactification of the spaces is integral. Such classes are interesting for their use in congruences with cuspidal classes to prove connections between the special L-value and the size of the Selmer group of the Hecke character.Comment: 37 pages; strengthened integrality result (Proposition 16), corrected statement of Theorem 3, and revised introductio

    Modular symbols in Iwasawa theory

    Full text link
    This survey paper is focused on a connection between the geometry of GLd\mathrm{GL}_d and the arithmetic of GLd−1\mathrm{GL}_{d-1} over global fields, for integers d≄2d \ge 2. For d=2d = 2 over Q\mathbb{Q}, there is an explicit conjecture of the third author relating the geometry of modular curves and the arithmetic of cyclotomic fields, and it is proven in many instances by the work of the first two authors. The paper is divided into three parts: in the first, we explain the conjecture of the third author and the main result of the first two authors on it. In the second, we explain an analogous conjecture and result for d=2d = 2 over Fq(t)\mathbb{F}_q(t). In the third, we pose questions for general dd over the rationals, imaginary quadratic fields, and global function fields.Comment: 43 page

    Midwave infrared InAs/GaSb superlattice photodiode with a dopant-free p–n junction

    Get PDF
    Midwave infrared (MWIR) InAs/GaSb superlattice (SL) photodiode with a dopant-free p–n junction was fabricated by molecular beam epitaxy on GaSb substrate. Depending on the thickness ratio between InAs and GaSb layers in the SL period, the residual background carriers of this adjustable material can be either n-type or p-type. Using this flexibility in residual doping of the SL material, the p–n junction of the device is made with different non-intentionally doped (nid) SL structures. The SL photodiode processed shows a cut-off wavelength at 4.65 ÎŒm at 77 K, residual carrier concentration equal to 1.75 × 1015 cm−3, dark current density as low as 2.8 × 10−8 A/cm2 at 50 mV reverse bias and R0A product as high as 2 × 106 Ω cm2. The results obtained demonstrate the possibility to fabricate a SL pin photodiode without intentional doping the pn junction

    Equidistribution of Heegner Points and Ternary Quadratic Forms

    Get PDF
    We prove new equidistribution results for Galois orbits of Heegner points with respect to reduction maps at inert primes. The arguments are based on two different techniques: primitive representations of integers by quadratic forms and distribution relations for Heegner points. Our results generalize one of the equidistribution theorems established by Cornut and Vatsal in the sense that we allow both the fundamental discriminant and the conductor to grow. Moreover, for fixed fundamental discriminant and variable conductor, we deduce an effective surjectivity theorem for the reduction map from Heegner points to supersingular points at a fixed inert prime. Our results are applicable to the setting considered by Kolyvagin in the construction of the Heegner points Euler system

    Radiometric and noise characteristics of InAs-rich T2SL MWIR pin photodiodes

    Get PDF
    We present a full characterization of the radiometric performances of a type-II InAs/GaSb superlattice pin photodiode operating in the mid-wavelength infrared domain. We first focused our attention on quantum efficiency, responsivity and angular response measurements: quantum efficiency reaches 23% at λ = 2.1 ”m for 1 ”m thick structure. Noise under illumination measurements are also reported: noise is limited by the Schottky contribution for reverse bias voltage smaller than 1.2 V. The specific detectivity, estimated for 2p field-of-view and 333 K background temperature, was determined equal to 2.29 x 10^10 Jones for -0,8 V bias voltage and 77 K operating temperature
    • 

    corecore