1,691 research outputs found

    Can ultrastrong coupling change ground state chemical reactions?

    Full text link
    Recent advancements on the fabrication of organic micro- and nanostructures have permitted the strong collective light-matter coupling regime to be reached with molecular materials. Pioneering works in this direction have shown the effects of this regime in the excited state reactivity of molecular systems and at the same time has opened up the question of whether it is possible to introduce any modifications in the electronic ground energy landscape which could affect chemical thermodynamics and/or kinetics. In this work, we use a model system of many molecules coupled to a surface-plasmon field to gain insight on the key parameters which govern the modifications of the ground-state Potential Energy Surface (PES). Our findings confirm that the energetic changes per molecule are determined by single-molecule-light couplings which are essentially local, in contrast with those of the electronically excited states, for which energetic corrections are of a collective nature. Still, we reveal some intriguing quantum-coherent effects associated with pathways of concerted reactions, where two or more molecules undergo reactions simultaneously, and which can be of relevance in low-barrier reactions. Finally, we also explore modifications to nonadiabatic dynamics and conclude that, for this particular model, the presence of a large number of dark states yields negligible changes. Our study reveals new possibilities as well as limitations for the emerging field of polariton chemistry

    Theoretical Analysis of Exciton Wave Packet Dynamics in Polaritonic Wires

    Full text link
    We present a comprehensive study of exciton wave packet evolution in disordered lossless polaritonic wires. Our simulations reveal signatures of ballistic, diffusive, and subdiffusive exciton dynamics under strong light-matter coupling and identify the typical timescales associated with the transitions between these qualitatively distinct transport phenomena. We determine optimal truncations of the molecular subsystem and radiation field required for generating reliable time-dependent data from computational simulations at affordable cost. The time evolution of the photonic part of the wave function reveals that many cavity modes contribute to the dynamics in a non-trivial fashion. Hence, a sizable number of photon modes is needed to describe exciton propagation with reasonable accuracy. We find and discuss an intriguingly common lack of dominance of the photon mode on resonance with the molecular system both in the presence and absence of disorder. We discuss the implications of our investigations to the development of theoretical models and analysis of experiments where coherent intermolecular energy transport and static disorder play an important role

    Theory for Nonlinear Spectroscopy of Vibrational Polaritons

    Full text link
    Molecular polaritons have gained considerable attention due to their potential to control nanoscale molecular processes by harnessing electromagnetic coherence. Although recent experiments with liquid-phase vibrational polaritons have shown great promise for exploiting these effects, significant challenges remain in interpreting their spectroscopic signatures. In this letter, we develop a quantum-mechanical theory of pump-probe spectroscopy for this class of polaritons based on the quantum Langevin equations and the input-output theory. Comparison with recent experimental data shows good agreement upon consideration of the various vibrational anharmonicities that modulate the signals. Finally, a simple and intuitive interpretation of the data based on an effective mode-coupling theory is provided. Our work provides a solid theoretical framework to elucidate nonlinear optical properties of molecular polaritons as well as to analyze further multidimensional spectroscopy experiments on these systems
    • …
    corecore