2,202 research outputs found

    Cytogenetic research in wild animals at FCAVJ, Brazil. I. Mammals

    Get PDF

    Pharmacological targeting of bet bromodomain proteins in acute myeloid leukemia and malignant lymphomas : From molecular characterization to clinical applications

    Get PDF
    Altres ajuts: G.R. acknowledges supports from European Regional Development Fund (ERDF) "Una manera de hacer Europa".A25in25proarENG-pr910210011and DNA-protein interactions and abnormal chromatin remodeling are a major cause of uncontrolled gene transcription and constitutive activation of critical signaling pathways in cancer cells. Multiple epigenetic regulators are known to be deregulated in several hematologic neoplasms, by somatic mutation, amplification, or deletion, allowing the identification of specific epigenetic signatures, but at the same time providing new therapeutic opportunities. While these vulnerabilities have been traditionally addressed by hypomethylating agents or histone deacetylase inhibitors, pharmacological targeting of bromodomain-containing proteins has recently emerged as a promising approach in a number of lymphoid and myeloid malignancies. Indeed, preclinical and clinical studies highlight the relevance of targeting the bromodomain and extra-terminal (BET) family as an efficient strategy of target transcription irrespective of the presence of epigenetic mutations. Here we will summarize the main advances achieved in the last decade regarding the preclinical and clinical evaluation of BET bromodomain inhibitors in hematologic cancers, either as monotherapies or in combinations with standard and/or experimental agents. A mention will finally be given to the new concept of the protein degrader, and the perspective it holds for the design of bromodomain-based therapies

    Chronic hemolytic anemia is associated with a new glucose-6-phosphate dehydrogenase in-frame deletion in an older woman

    Get PDF
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked disorder, is usually observed in hemizygote males and very rarely in females. The G6PD class 1 variants, very uncommon, are associated with chronic hemolytic anemia. Here we report a Portuguese woman who suffered in her sixties from a chronic hemolytic anemia due to G6PD deficiency. Molecular studies revealed heterozygosity for an in-frame 18-bp deletion, mapping to exon 10 leading to a deletion of 6 residues, 362-367 (LNERKA), which is a novel G6PD class 1 variant, G6PD Tondela. Two of her three daughters, asymptomatic, with G6PD activity within the normal range, are heterozygous for the same deletion. The patient's leukocyte and reticulocyte mRNA studies revealed an almost exclusive expression of the mutant allele, explaining the chronic hemolytic anemia. Patient whole blood genomic DNA HUMARA assay showed a balanced pattern of X chromosome inactivation (XCI), but granulocyte DNA showed extensive skewing, harboring the mutated allele, implying that in whole blood, lymphocyte DNA, with a very long lifetime, may cover up the current high XCI skewing. This observation indicates that HUMARA assay in women should be assessed in granulocytes and not in total leukocytes

    Immune-Checkpoint Inhibitors in B-Cell Lymphoma

    Get PDF
    For years, immunotherapy has been considered a viable and attractive treatment option for patients with cancer. Among the immunotherapy arsenal, the targeting of intratumoral immune cells by immune-checkpoint inhibitory agents has recently revolutionised the treatment of several subtypes of tumours. These approaches, aimed at restoring an effective antitumour immunity, rapidly reached the market thanks to the simultaneous identification of inhibitory signals that dampen an effective antitumor response in a large variety of neoplastic cells and the clinical development of monoclonal antibodies targeting checkpoint receptors. Leading therapies in solid tumours are mainly focused on the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) pathways. These approaches have found a promising testing ground in both Hodgkin lymphoma and non-Hodgkin lymphoma, mainly because, in these diseases, the malignant cells interact with the immune system and commonly provide signals that regulate immune function. Although several trials have already demonstrated evidence of therapeutic activity with some checkpoint inhibitors in lymphoma, many of the immunologic lessons learned from solid tumours may not directly translate to lymphoid malignancies. In this sense, the mechanisms of effective antitumor responses are different between the different lymphoma subtypes, while the reasons for this substantial difference remain partially unknown. This review will discuss the current advances of immune-checkpoint blockade therapies in B-cell lymphoma and build a projection of how the field may evolve in the near future. In particular, we will analyse the current strategies being evaluated both preclinically and clinically, with the aim of fostering the use of immune-checkpoint inhibitors in lymphoma, including combination approaches with chemotherapeutics, biological agents and/or different immunologic therapies

    Recent advances in the targeting of epigenetic regulators in b-cell non-hodgkin lymphoma

    Get PDF
    In the last 10 years, major advances have been made in the diagnosis and development of selective therapies for several blood cancers, including B-cell non-Hodgkin lymphoma (B-NHL), a heterogeneous group of malignancies arising from the mature B lymphocyte compartment. However, most of these entities remain incurable and current treatments are associated with variable efficacy, several adverse events, and frequent relapses. Thus, new diagnostic paradigms and novel therapeutic options are required to improve the prognosis of patients with B-NHL. With the recent deciphering of the mutational landscapes of B-cell disorders by high-throughput sequencing, it came out that different epigenetic deregulations might drive and/or promote B lymphomagenesis. Consistently, over the last decade, numerous epigenetic drugs (or epidrugs) have emerged in the clinical management of B-NHL patients. In this review, we will present an overview of the most relevant epidrugs tested and/or used so far for the treatment of different subtypes of B-NHL, from first-generation epigenetic therapies like histone acetyl transferases (HDACs) or DNA-methyl transferases (DNMTs) inhibitors to new agents showing selectivity for proteins that are mutated, translocated, and/or overexpressed in these diseases, including EZH2, BET, and PRMT. We will dissect the mechanisms of action of these epigenetic inhibitors, as well as the molecular processes underlying their lack of efficacy in refractory patients. This review will also provide a summary of the latest strategies being employed in preclinical and clinical settings, and will point out the most promising lines of investigation in the field

    Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H2O2-induced reduction in primary cell wall hydration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extensin deposition is considered important for the correct assembly and biophysical properties of primary cell walls, with consequences to plant resistance to pathogens, tissue morphology, cell adhesion and extension growth. However, evidence for a direct and causal role for the extensin network formation in changes to cell wall properties has been lacking.</p> <p>Results</p> <p>Hydrogen peroxide treatment of grapevine (<it>Vitis vinifera </it>cv. Touriga) callus cell walls was seen to induce a marked reduction in their hydration and thickness. An analysis of matrix proteins demonstrated this occurs with the insolubilisation of an abundant protein, GvP1, which displays a primary structure and post-translational modifications typical of dicotyledon extensins. The hydration of callus cell walls free from saline-soluble proteins did not change in response to H<sub>2</sub>O<sub>2</sub>, but fully regained this capacity after addition of extensin-rich saline extracts. To assay the specific contribution of GvP1 cross-linking and other wall matrix proteins to the reduction in hydration, GvP1 levels in cell walls were manipulated <it>in vitro </it>by binding selected fractions of extracellular proteins and their effect on wall hydration during H<sub>2</sub>O<sub>2 </sub>incubation assayed.</p> <p>Conclusions</p> <p>This approach allowed us to conclude that a peroxidase-mediated formation of a covalently linked network of GvP1 is essential and causal in the reduction of grapevine callus wall hydration in response to H<sub>2</sub>O<sub>2</sub>. Importantly, this approach also indicated that extensin network effects on hydration was only partially irreversible and remained sensitive to changes in matrix charge. We discuss this mechanism and the importance of these changes to primary wall properties in the light of extensin distribution in dicotyledons.</p

    Tolerogenic versus Inflammatory Activity of Peripheral Blood Monocytes and Dendritic Cells Subpopulations in Systemic Lupus Erythematosus

    Get PDF
    Abnormalities in monocytes and in peripheral blood dendritic cells (DC) subsets have been reported in systemic lupus erythematosus (SLE). We aim to clarify the tolerogenic or inflammatory role of these cells based on ICOSL or IFN-α and chemokine mRNA expression, respectively, after cell purification. The study included 18 SLE patients with active disease (ASLE), 25 with inactive disease (ISLE), and 30 healthy controls (HG). In purified plasmacytoid DC (pDC) was observed a lower ICOSL mRNA expression in ASLE and an increase in ISLE; similarly, a lower ICOSL mRNA expression in monocytes of ALSE patients was found. However, a higher ICOSL mRNA expression was observed in ASLE compared to HG in myeloid DCs. Interestingly, clinical parameters seem to be related with ICOSL mRNA expression. Regarding the inflammatory activity it was observed in purified monocytes and CD14(-/low) CD16(+) DCs an increase of CCL2, CXCL9, and CXCL10 mRNA expression in ASLE compared to HG. In myeloid DC no differences were observed regarding chemokines, and IFN-α mRNA expression. In pDC, a higher IFN-α mRNA expression was observed in ASLE. Deviations in ICOSL, chemokine, and IFN-α mRNA expression in peripheral blood monocytes and dendritic cells subpopulations in SLE appear to be related to disease activity

    JAK2V617F allele burden is associated with thrombotic mechanisms activation in polycythemia vera and essential thrombocythemia patients

    Get PDF
    The clinical courses of polycythemia vera (PV) and essential thrombocythemia (ET) are characterized by thrombohemorrhagic diathesis. Several groups have suggested an association between JAK2V617F mutation and thrombosis. We hypothesized a relationship between JAK2V617F allele burden, cellular activation parameters, and thrombosis. We evaluated a group of PV and ET patients using flow cytometry: platelet CD62P, CD63, and dense granules, platelet-leukocyte aggregates (PLA), leukocyte CD11b and monocyte tissue factor (TF) expression. All patients had increased baseline platelet CD62P and CD63 expression (p 50 % presented higher levels of leukocyte activation. In ET, thrombosis was associated with JAK2V617F mutation (p < 0.05, χ (2) = 5.2), increased monocyte CD11b (p < 0.05) and with platelet-PMN aggregates (p < 0.05). In ET patients, hydroxyurea does not significantly reduce the activation parameters. Our data demonstrate that JAK2V617F allele burden is directly correlated with activation parameters that drive mechanisms that favor thrombosis.info:eu-repo/semantics/publishedVersio
    corecore