9,906 research outputs found

    Transport properties of a two impurity system: a theoretical approach

    Get PDF
    A system of two interacting cobalt atoms, at varying distances, was studied in a recent scanning tunneling microscope experiment by Bork et. al.[Nature Phys. 7, 901 (2011)]. We propose a microscopic model that explains, for all experimentally analyzed interatomic distances, the physics observed in these experiments. Our proposal is based on the two-impurity Anderson model, with the inclusion of a two-path geometry for charge transport. This many-body system is treated in the finite-U slave boson mean-field approximation and the logarithmic-discretization embedded-cluster approximation. We physically characterize the different charge transport regimes of this system at various interatomic distances and show that, as in the experiments, the features observed in the transport properties depend on the presence of two impurities but also on the existence of two conducting channels for electron transport. We interpret the splitting observed in the conductance as the result of the hybridization of the two Kondo resonances associated with each impurity.Comment: 5 pages, 5 figure

    Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth

    Full text link
    We report on the effect of substrate temperature (T) on both local structure and long-wavelength fluctuations of polycrystalline CdTe thin films deposited on Si(001). A strong T-dependent mound evolution is observed and explained in terms of the energy barrier to inter-grain diffusion at grain boundaries, as corroborated by Monte Carlo simulations. This leads to transitions from uncorrelated growth to a crossover from random-to-correlated growth and transient anomalous scaling as T increases. Due to these finite-time effects, we were not able to determine the universality class of the system through the critical exponents. Nevertheless, we demonstrate that this can be circumvented by analyzing height, roughness and maximal height distributions, which allow us to prove that CdTe grows asymptotically according to the Kardar-Parisi-Zhang (KPZ) equation in a broad range of T. More important, one finds positive (negative) velocity excess in the growth at low (high) T, indicating that it is possible to control the KPZ non-linearity by adjusting the temperature.Comment: 6 pages, 5 figure

    Differential Density Statistics of Galaxy Distribution and the Luminosity Function

    Get PDF
    This paper uses data obtained from the galaxy luminosity function (LF) to calculate two types of radial number densities statistics of the galaxy distribution as discussed in Ribeiro (2005), namely the differential density γ\gamma and the integral differential density γ\gamma^\ast. By applying the theory advanced by Ribeiro and Stoeger (2003), which connects the relativistic cosmology number counts with the astronomically derived LF, the differential number counts dN/dzdN/dz are extracted from the LF and used to calculate both γ\gamma and γ\gamma^\ast with various cosmological distance definitions, namely the area distance, luminosity distance, galaxy area distance and redshift distance. LF data are taken from the CNOC2 galaxy redshift survey and γ\gamma and γ\gamma^\ast are calculated for two cosmological models: Einstein-de Sitter and an Ωm0=0.3\Omega_{m_0}=0.3, ΩΛ0=0.7\Omega_{\Lambda_0}=0.7 standard cosmology. The results confirm the strong dependency of both statistics on the distance definition, as predicted in Ribeiro (2005), as well as showing that plots of γ\gamma and γ\gamma^\ast against the luminosity and redshift distances indicate that the CNOC2 galaxy distribution follows a power law pattern for redshifts higher than 0.1. These findings bring support to Ribeiro's (2005) theoretical proposition that using different cosmological distance measures in statistical analyses of galaxy surveys can lead to significant ambiguity in drawing conclusions about the behavior of the observed large scale distribution of galaxies.Comment: LaTeX, 37 pages, 6 tables, 10 figures. Accepted for publication in "The Astrophysical Journal

    Magnetization of undoped 2-leg S = 1/2 spin ladders in La4Sr10Cu24O41

    Full text link
    Magnetization data of single crystalline La4Sr10Cu24O41 are presented. In this compound, doped spin chains and undoped spin ladders are realized. The magnetization, at low temperatures, is governed by the chain subsystem with a finite interchain coupling which leads to short range antiferromagnetic spin correlations. At higher temperatures, the response of the chains can be estimated in terms of a Curie-Weiss law. For the ladders, we apply the low-temperature approximation for a S=1/2 2-leg spin ladder by Troyer et al.Comment: 2 pages, 2 figure

    Mugwort-celery-carrot-curry syndrome: a case report

    Get PDF
    corecore