22 research outputs found

    Quantum Oscillation Signatures of Pressure-induced Topological Phase Transition in BiTeI

    Get PDF
    We report the pressure-induced topological quantum phase transition of BiTeI single crystals using Shubnikov-de Haas oscillations of bulk Fermi surfaces. The sizes of the inner and the outer FSs of the Rashba-split bands exhibit opposite pressure dependence up to P=3.35 GPa, indicating pressure-tunable Rashba effect. Above a critical pressure P similar to 2 GPa, the Shubnikov-de Haas frequency for the inner Fermi surface increases unusually with pressure, and the Shubnikov-de Haas oscillations for the outer Fermi surface shows an abrupt phase shift. In comparison with band structure calculations, we find that these unusual behaviors originate from the Fermi surface shape change due to pressure-induced band inversion. These results clearly demonstrate that the topological quantum phase transition is intimately tied to the shape of bulk Fermi surfaces enclosing the time-reversal invariant momenta with band inversion.11117Ysciescopu

    Debye formulas for a relaxing system with memory

    Get PDF
    Rate (master) equations are ubiquitous in statistical physics, yet, to the best of our knowledge, a rate equation with memory has previously never been considered. We write down an integro-differential rate equation for the evolution of a thermally relaxing system with memory. For concreteness we adopt as a model a single-domain magnetic particle driven by a small ac field and derive the modified Debye formulas. For any memory time Θ the in-phase component of the resultant ac susceptibility is positive at small probing frequencies ω, but becomes negative at large ω. The system thus exhibits frequency induced diamagnetism. For comparison we also consider particle pairs with dipolar coupling. The memory effect is found to be enhanced by ferromagnetic coupling and suppressed by antiferromagnetic coupling. Numerical calculations support the prediction of a negative susceptibility which arises from a phase shift induced by the memory effect. It is proposed that the onset of frequency induced diamagnetism represents a viable experimental signature of correlated noise

    Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials

    Get PDF
    How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an ‘electron repository’ role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effect—electron spiral motion and magnon-drag thermopower—as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles

    Solvothermal synthesis and thermoelectric properties of indium telluride nanostring-cluster hierarchical structures

    Get PDF
    A simple solvothermal approach has been developed to successfully synthesize n-type α-In2Te3 thermoelectric nanomaterials. The nanostring-cluster hierarchical structures were prepared using In(NO3)3 and Na2TeO3 as the reactants in a mixed solvent of ethylenediamine and ethylene glycol at 200°C for 24 h. A diffusion-limited reaction mechanism was proposed to explain the formation of the hierarchical structures. The Seebeck coefficient of the bulk pellet pressed by the obtained samples exhibits 43% enhancement over that of the corresponding thin film at room temperature. The electrical conductivity of the bulk pellet is one to four orders of magnitude higher than that of the corresponding thin film or p-type bulk sample. The synthetic route can be applied to obtain other low-dimensional semiconducting telluride nanostructures

    Enhancement of the Thermoelectric Figure-of-Merit in a Wide Temperature Range in In4Se3-xCl0.03 Bulk Crystals

    No full text
    The state-of-the-art record of thermoelectric figure-of-merit (ZT) of 1.53 at 425 degrees C is achieved by chlorine doping in In4Se3-xCl0.03 bulk crystalline materials as used for n-type thermoelectric energy harvesting. The low-dimensional property imparted by chlorine doping significantly increases the electrical conductivity and reduces the thermal conductivity resulting in a high power factor over a wide temperature range.X115350sciescopu

    Dimensional crossover of charge density wave and thermoelectric properties in CeTe2-xSbx single crystals

    No full text
    We have measured the electrical resistivity and Seebeck coefficient of CeTe2-xSbx(x = 0.0, 0.05, 0.1, 0.25, and 0.5) single crystals from 100 K to 300 K along the ab-plane, and we calculated their electronic structures and Fermi surfaces by using the density functional theory approach. The band structures of CeTe2show the 2-dimensional (2D) Fermi surface nesting behavior, which induce the charge density wave (CDW). In addition, there is a 3-dimensional (3D) electron Fermi surface hindering the perfect CDW gap opening. By hole doping with the substitution of Sb at the Te-site, the 3D-like Fermi surface disappears and the 2D perfect CDW gap opening enhances the power factor up to x = 0.1. With further hole doping, the Fermi surfaces become 3-dimensional structure with heavy hole bands. The enhancement of the power factor is observed near the dimensional crossover of CDW, at x = 0.1, where the CDW gap is maximized. Here we show the strong relationship between the dimensionality of CDW and high thermoelectric power factor. © 2012 American Institute of Physics.

    Peierls distortion as a route to high thermoelectric performance in In4Se3-delta crystals

    No full text
    Thermoelectric energy harvesting-the transformation of waste heat into useful electricity-is of great interest for energy sustainability. The main obstacle is the low thermoelectric efficiency of materials for converting heat to electricity, quantified by the thermoelectric figure of merit, ZT. The best available n-type materials for use in mid-temperature (500-900K) thermoelectric generators have a relatively low ZT of 1 or less, and so there is much interest in finding avenues for increasing this figure of merit(1). Here we report a binary crystalline n-type material, In4Se3-delta, which achieves the ZT value of 1.48 at 705K-very high for a bulk material. Using high-resolution transmission electron microscopy, electron diffraction, and first-principles calculations, we demonstrate that this material supports a charge density wave instability which is responsible for the large anisotropy observed in the electric and thermal transport. The high ZT value is the result of the high Seebeck coefficient and the low thermal conductivity in the plane of the charge density wave. Our results suggest a new direction in the search for high-performance thermoelectric materials, exploiting intrinsic nanostructural bulk properties induced by charge density waves.X11297280sciescopu

    Interference of magnetic and anisotropic tensor susceptibility reflections in resonant x-ray scattering of GdB4

    No full text
    Resonant x-ray scattering experiments at the Gd L-3 edge show interference between magnetic and anisotropic tensor susceptibility (ATS) reflections in GdB4. Energy profiles obtained from the magnetic and ATS resonances exhibited similar to10 eV separation between the maximum resonance energies. The findings show that the Gd 5d band experienced hybridization giving rise to a significant split into isotropic lower energy band and distorted upper band states that account for the magnetic and ATS scattering, respectively.X1130sciescopu
    corecore