78 research outputs found

    Ribozyme-based insulator parts buffer synthetic circuits from genetic context

    Get PDF
    Synthetic genetic programs are built from circuits that integrate sensors and implement temporal control of gene expression. Transcriptional circuits are layered by using promoters to carry the signal between circuits. In other words, the output promoter of one circuit serves as the input promoter to the next. Thus, connecting circuits requires physically connecting a promoter to the next circuit. We show that the sequence at the junction between the input promoter and circuit can affect the input-output response (transfer function) of the circuit. A library of putative sequences that might reduce (or buffer) such context effects, which we refer to as 'insulator parts', is screened in Escherichia coli. We find that ribozymes that cleave the 5β€² untranslated region (5β€²-UTR) of the mRNA are effective insulators. They generate quantitatively identical transfer functions, irrespective of the identity of the input promoter. When these insulators are used to join synthetic gene circuits, the behavior of layered circuits can be predicted using a mathematical model. The inclusion of insulators will be critical in reliably permuting circuits to build different programs.Life Technologies, Inc.United States. Defense Advanced Research Projects Agency (DARPA CLIO N66001-12-C-4018)United States. Office of Naval Research (N00014-10-1-0245)National Science Foundation (U.S.) (CCF-0943385)National Institutes of Health (U.S.) (AI067699)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (SynBERC, SA5284-11210

    Intracellular directed evolution of proteins from combinatorial libraries based on conditional phage replication

    Get PDF
    Directed evolution is a powerful tool to improve the characteristics of biomolecules. Here we present a protocol for the intracellular evolution of proteins with distinct differences and advantages in comparison with established techniques. These include the ability to select for a particular function from a library of protein variants inside cells, minimizing undesired coevolution and propagation of nonfunctional library members, as well as allowing positive and negative selection logics using basally active promoters. A typical evolution experiment comprises the following stages: (i) preparation of a combinatorial M13 phagemid (PM) library expressing variants of the gene of interest (GOI) and preparation of the Escherichia coli host cells; (ii) multiple rounds of an intracellular selection process toward a desired activity; and (iii) the characterization of the evolved target proteins. The system has been developed for the selection of new orthogonal transcription factors (TFs) but is capable of evolving any geneβ€”or gene circuit functionβ€”that can be linked to conditional M13 phage replication. Here we demonstrate our approach using as an example the directed evolution of the bacteriophage Ξ» cI TF against two synthetic bidirectional promoters. The evolved TF variants enable simultaneous activation and repression against their engineered promoters and do not cross-react with the wild-type promoter, thus ensuring orthogonality. This protocol requires no special equipment, allowing synthetic biologists and general users to evolve improved biomolecules within ~7 weeks

    Monotonicity, frustration, and ordered response: an analysis of the energy landscape of perturbed large-scale biological networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For large-scale biological networks represented as signed graphs, the index of frustration measures how far a network is from a monotone system, i.e., how incoherently the system responds to perturbations.</p> <p>Results</p> <p>In this paper we find that the frustration is systematically lower in transcriptional networks (modeled at functional level) than in signaling and metabolic networks (modeled at stoichiometric level). A possible interpretation of this result is in terms of energetic cost of an interaction: an erroneous or contradictory transcriptional action costs much more than a signaling/metabolic error, and therefore must be avoided as much as possible. Averaging over all possible perturbations, however, we also find that unlike for transcriptional networks, in the signaling/metabolic networks the probability of finding the system in its least frustrated configuration tends to be high also in correspondence of a moderate energetic regime, meaning that, in spite of the higher frustration, these networks can achieve a globally ordered response to perturbations even for moderate values of the strength of the interactions. Furthermore, an analysis of the energy landscape shows that signaling and metabolic networks lack energetic barriers around their global optima, a property also favouring global order.</p> <p>Conclusion</p> <p>In conclusion, transcriptional and signaling/metabolic networks appear to have systematic differences in both the index of frustration and the transition to global order. These differences are interpretable in terms of the different functions of the various classes of networks.</p

    Reversal of the Ξ”degP Phenotypes by a Novel rpoE Allele of Escherichia coli

    Get PDF
    RseA sequesters RpoE (ΟƒE) to the inner membrane of Escherichia coli when envelope stress is low. Elevated envelope stress triggers RseA cleavage by the sequential action of two membrane proteases, DegS and RseP, releasing ΟƒE to activate an envelope stress reducing pathway. Revertants of a Ξ”degP Ξ”bamB strain, which fails to grow at 37Β°C due to high envelope stress, harbored mutations in the rseA and rpoE genes. Null and missense rseA mutations constitutively hyper-activated the ΟƒE regulon and significantly reduced the major outer membrane protein (OMP) levels. In contrast, a novel rpoE allele, rpoE3, resulting from the partial duplication of the rpoE gene, increased ΟƒE levels greater than that seen in the rseA mutant background but did not reduce OMP levels. A ΟƒE-dependent RybB::LacZ construct showed only a weak activation of the ΟƒE pathway by rpoE3. Despite this, rpoE3 fully reversed the growth and envelope vesiculation phenotypes of Ξ”degP. Interestingly, rpoE3 also brought down the modestly activated Cpx envelope stress pathway in the Ξ”degP strain to the wild type level, showing the complementary nature of the ΟƒE and Cpx pathways. Through employing a labile mutant periplasmic protein, AcrAL222Q, it was determined that the rpoE3 mutation overcomes the Ξ”degP phenotypes, in part, by activating a ΟƒE-dependent proteolytic pathway. Our data suggest that a reduction in the OMP levels is not intrinsic to the ΟƒE-mediated mechanism of lowering envelope stress. They also suggest that under extreme envelope stress, a tight homeostasis loop between RseA and ΟƒE may partly be responsible for cell death, and this loop can be broken by mutations that either lower RseA activity or increase ΟƒE levels

    Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis

    Get PDF
    Related organisms typically rely on orthologous regulatory proteins to respond to a given signal. However, the extent to which (or even if) the targets of shared regulatory proteins are maintained across species has remained largely unknown. This question is of particular significance in bacteria due to the widespread effects of horizontal gene transfer. Here, we address this question by investigating the regulons controlled by the DNA-binding PhoP protein, which governs virulence and Mg2+ homeostasis in several bacterial species. We establish that the ancestral PhoP protein directs largely different gene sets in ten analyzed species of the family Enterobacteriaceae, reflecting both regulation of species-specific targets and transcriptional rewiring of shared genes. The two targets directly activated by PhoP in all ten species (the most distant of which diverged >200 million years ago), and coding for the most conserved proteins are the phoPQ operon itself and the lipoprotein-encoding slyB gene, which decreases PhoP protein activity. The Mg2+-responsive PhoP protein dictates expression of Mg2+ transporters and of enzymes that modify Mg2+-binding sites in the cell envelope in most analyzed species. In contrast to the core PhoP regulon, which determines the amount of active PhoP and copes with the low Mg2+ stress, the variable members of the regulon contribute species-specific traits, a property shared with regulons controlled by dissimilar regulatory proteins and responding to different signals

    Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis

    Get PDF
    Related organisms typically rely on orthologous regulatory proteins to respond to a given signal. However, the extent to which (or even if) the targets of shared regulatory proteins are maintained across species has remained largely unknown. This question is of particular significance in bacteria due to the widespread effects of horizontal gene transfer. Here, we address this question by investigating the regulons controlled by the DNA-binding PhoP protein, which governs virulence and Mg2+ homeostasis in several bacterial species. We establish that the ancestral PhoP protein directs largely different gene sets in ten analyzed species of the family Enterobacteriaceae, reflecting both regulation of species-specific targets and transcriptional rewiring of shared genes. The two targets directly activated by PhoP in all ten species (the most distant of which diverged >200 million years ago), and coding for the most conserved proteins are the phoPQ operon itself and the lipoprotein-encoding slyB gene, which decreases PhoP protein activity. The Mg2+-responsive PhoP protein dictates expression of Mg2+ transporters and of enzymes that modify Mg2+-binding sites in the cell envelope in most analyzed species. In contrast to the core PhoP regulon, which determines the amount of active PhoP and copes with the low Mg2+ stress, the variable members of the regulon contribute species-specific traits, a property shared with regulons controlled by dissimilar regulatory proteins and responding to different signals

    Reconstruction of the Core and Extended Regulons of Global Transcription Factors

    Get PDF
    The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across Ξ±-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual Ξ±-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 Ξ±-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator) in the Ξ±-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other regulatory networks
    • …
    corecore