124 research outputs found

    A Decade-Long Change in the Elevational Distribution of Non-Volant Small Mammals on Mount Meru, Tanzania

    Get PDF
    Understanding species distribution across elevational gradients is crucial for developing conservation strategies for montane biotic systems. A survey of small mammals was conducted on Mount Meru at six elevations, ranging between 1500 m and 3650 m. A total of 803 small mammal individuals, including 2 shrew species and 13 rodent species, were documented. Of these, Crocidura newmarki and Lophuromys verhageni were endemic on Mount Meru. Species richness was highest at mid-elevations, which is in line with the global pattern for small mammals. Prior to our study, the most complete data on small mammals on Mount Meru was collected in 2009. Our study provides an opportunity to show how small mammal elevational distribution has changed, over the last decade. We found six species (Arvicanthis niloticus, Mastomys natalensis, Lemniscomys striatus, Dasymys incomtus, Cricetomys ansorgei, and Montemys delectorum), which were not documented in 2009, but did not find Otomys tropicalis. Interestingly, the community composition at higher elevations in 2021 resembles that at lower elevations in 2009, suggesting that small mammal species have moved their range upward over time. Climate change could be a factor associated with the distributional shift found

    Chromosomal and molecular characterization of Aethomys

    Get PDF
    Aethomys is a common and widespread rodent genus in the African savannas and grasslands. However, its systematics and taxonomy are still unclear as no study has covered the entire range. In fact it might not be a monophyletic genus and perhaps should be split into two subgenera, Micaelamys and Aethomys. In this paper, we present findings based on the cytogenetics and the entire cytochrome b sequence of two species from Zambia (A. kaiseri) and Tanzania (A. chrysophilus), and we compare them with the sequences of a South African species (A. namaquensis) and other allied muroid genera. Comparison of the banded chromosomes revealed complete G-band homology between the autosomes of the two species. However, the X and Y chromosomes clearly differ in size and in C- and G-banding, being much larger in A. kaiseri. Comparison of the cytochrome b sequences places the separation between A. kaiseri and A. chrysophilus at 4.49 Mya, a period of intense speciation in other African muroids. The resulting phylogeny strongly supports the idea of a paraphyletic group, suggesting the need to elevate the previously described subgenera to the genus rank

    Relationships between seasonal changes in diet of multimammate rat (Mastomys natalensis) and its breeding patterns in semi-arid areas in Tanzania

    Get PDF
    The diet and breeding patterns of Mastomys natalensis in semi-arid areas of Isimani division, Iringa region, Tanzania were investigated in maize fields and fallow land. The aim was to investigate the influence of diet on breeding patterns of M. natalensis. Removal trapping was used to capture rodents and analyse diet categories while Capture-mark-release trapping was used to investigate breeding patterns of female M. natalensis. Mastomys natalensis comprised 94%of the total capture, and the remaining 6% comprised of six other species. Statistical analysis of food preferences indicated that both vegetative materials and seeds were significantly higher in the overall diet of M. natalensis compared with other food materials. Significant differences in the proportions of vegetativematerials and seeds were found between seasons (dry, wet), but not between habitats (fallow, maize). There was a clear seasonal pattern in the proportion of reproductively active females with peaks in April and troughs in October. The proportion of vegetative materialswas highest during thewet season and correlated positively with reproductive activity, suggesting that vegetative materials contain certain compounds (e.g. 6-MBOA) that trigger reproductive activity in M. natalensis. The breeding activity of M. natalensis in semi-arid areas might, thus, be reduced by limiting access to fresh vegetative food (e.g. young sprouting grass)

    Effect of synthetic hormones on reproduction in Mastomys natalensis

    Get PDF
    Rodent pest management traditionally relies on some form of lethal control. Developing effective fertility control for pest rodent species could be a major breakthrough particularly in the context of managing rodent population outbreaks. This laboratory-based study is the first to report on the effects of using fertility compounds on an outbreaking rodent pest species found throughout sub-Saharan Africa. Mastomys natalensis were fed bait containing the synthetic steroid hormones quinestrol and levonorgestrel, both singly and in combination, at three concentrations (10, 50, 100 ppm) for seven days. Consumption of the bait and animal body mass was mostly the same between treatments when analysed by sex, day and treatment. However, a repeated measures ANOVA indicated that quinestrol and quinestrol+levonorgestrel treatments reduced consumption by up to 45%, particularly at the higher concentrations of 50 and 100 ppm. Although there was no clear concentration effect on animal body mass, quinestrol and quinestrol+levonorgestrel lowered body mass by up to 20% compared to the untreated and levonorgestrel treatments. Quinestrol and quinestrol+levonorgestrel reduced the weight of male rat testes, epididymis and seminal vesicles by 60-80%, and sperm concentration and motility were reduced by more than 95%. No weight changes were observed to uterine and ovarian tissue; however, high uterine oedema was observed among all female rats consuming treated bait at 8 days and 40 days from trial start. Trials with mate pairing showed there were significant differences in the pregnancy rate with all treatments when compared to the untreated control group of rodents

    Home ranges, sex ratio and recruitment of the multimammate rat (Mastomys natalensis) in semi-arid areas in Tanzania

    Get PDF
    Investigation of home ranges, sex ratio and recruitment of the multimammate rat (Mastomys natalensis) in semi-arid areas of Tanzania was conducted in maize and fallow fields using the capture-mark-release (CMR) technique. The aim of this study was to generate useful data for the management of M. natalensis. The relative home range size of M. natalensis was significantly higher during the wet [544 m2±25 standard error (SE)] than during the dry (447 m2 ±18 SE) season, in males (521 m2 ±23 SE) than in females (450 m2 ±17 SE) and in adults (576 m2 ±34 SE) than in juveniles (459 m2 ±16 SE). However, there were no significant differences between habitats. Sex ratio was not significantly different (p=0.44) between habitats. Recruitment was significantly higher (p=0.000) in maize fields (mean=0.43) than in fallow land (mean=0.32) and differed significantly over time (p=0.0001) with the highest recruitment recorded from April to July and the lowest from October to December. Management strategies should focus on managing rodents inhabiting maize fields using methods that affect their recruitment in order to reduce the population increase of M. natalensi

    Impact of crop cycle on movement patterns of pest rodent species between fields and houses in Africa

    Get PDF
    Abstract Context. Rodent pests can have severe impacts on crop production in sub-Saharan Africa. In particular, the multimammate mouse Mastomys natalensis severely damages agricultural crops in southern and eastern Africa, leading to significant losses. Both its population ecology and breeding biology have been studied in agricultural and natural habitats. Population numbers erupt depending on the timing and amount of rainfall and may reach plague proportions, especially in agricultural settings, where it may become a serious pest. However, the ecology of this species, in particular its interactions with other species within the context of human settlement, is poorly understood. It may occasionally enter houses, but the degree to which it does so and the factors influencing this movement are not known. Aims. We investigated the relationship between Rattus spp. and M. natalensis entering buildings in an agro-ecological setting. We predicted that M. natalensis would enter houses more readily when food availability was lowest in the surrounding fields, and when the larger Rattus spp. were absent. Methods. We followed 40 individuals of M. natalensis in Swaziland and Namibia by radio-telemetry. Mice were captured in maize fields within 50 m of a homestead and fitted with radio-transmitters at three different times corresponding to different stages of crop development: pre-harvest, post-harvest and pre-planting. To corroborate the findings of the telemetry study, a non-toxic marker, rhodamine B, was mixed with standard bait and left at bait stations inside houses in 10 homesteads in Swaziland and Tanzania. Key results. Mice remained in the fields during the entire period of study in Swaziland, but entered buildings in Namibia during the post-harvest stage, which may represent a period of food shortage for these mice in the field. Rodents captured after baiting with rhodamine B demonstrated that Rattus spp. predominated within the houses. A small number of rhodamine B-marked M. natalensis were captured outside the houses, the proportion declining with distance away from the houses. Conclusions. These results suggest that in a typical rural African setting dominated by subsistence agriculture, Rattus spp. (when present) competitively exclude the smaller M. natalensis from entering houses. Implications. Interactions between rodent pest species may be important in determining which rodent species enter houses in rural African landscapes. Consideration of such interactions may play an important role when developing pest management strategies

    A systematic review of rodent pest research in Afro-Malagasy small-holder farming systems : are we asking the right questions

    Get PDF
    Rodent pests are especially problematic in terms of agriculture and public health since they can inflict considerable economic damage associated with their abundance, diversity, generalist feeding habits and high reproductive rates. To quantify rodent pest impacts and identify trends in rodent pest research impacting on small-holder agriculture in the Afro- Malagasy region we did a systematic review of research outputs from 1910 to 2015, by developing an a priori defined set of criteria to allow for replication of the review process. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We reviewed 162 publications, and while rodent pest research was spatially distributed across Africa (32 countries, including Madagascar), there was a disparity in number of studies per country with research biased towards four countries (Tanzania [25%], Nigeria [9%], Ethiopia [9%], Kenya [8%]) accounting for 51% of all rodent pest research in the Afro- Malagasy region. There was a disparity in the research themes addressed by Tanzanian publications compared to publications from the rest of the Afro-Malagasy region where research in Tanzania had a much more applied focus (50%) compared to a more basic research approach (92%) in the rest of the Afro-Malagasy region. We found that pest rodents have a significant negative effect on the Afro-Malagasy small-holder farming communities. Crop losses varied between cropping stages, storage and crops and the highest losses occurred during early cropping stages (46% median loss during seedling stage) and the mature stage (15% median loss). There was a scarcity of studies investigating the effectiveness of various management actions on rodent pest damage and population abundance. Our analysis highlights that there are inadequate empirical studies focused on developing sustainable control methods for rodent pests and rodent pests in the Africa-Malagasy context is generally ignored as a research topic.S1 Table. PRISMA checklist.S2 Table. List of rodent genera detected in rodent pest research in African agricultural systems from 1960±2015.S3 Table. List of different crops and cropping system as impacted by rodent pests in African agriculture (1960±2015).S1 List. Complete list of all publications used in the review±Publications in bold did not have full texts available at time of review.S2 List. Web of Science TM search history±.S1 Web of ScienceTM saved search.A European Union 9th European Development Fund grant from the African Caribbean and Pacific Science and Technology Programme (FED/2013/330-223), a grant from the United Kingdom's Department for International Development (AgriTT/894), a grant from the Sasol Agriculture Trust (South Africa), and International Foundation for Science (SE)-D/4984-2 to LHS.http://www.plosone.orgam2017Animal and Wildlife Science

    A systematic review of rodent pest research in Afro-Malagasy small-holder farming systems: Are we asking the right questions?

    Get PDF
    Rodent pests are especially problematic in terms of agriculture and public health since they can inflict considerable economic damage associated with their abundance, diversity, generalist feeding habits and high reproductive rates. To quantify rodent pest impacts and identify trends in rodent pest research impacting on small-holder agriculture in the Afro-Malagasy region we did a systematic review of research outputs from 1910 to 2015, by developing an a priori defined set of criteria to allow for replication of the review process. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We reviewed 162 publications, and while rodent pest research was spatially distributed across Africa (32 countries, including Madagascar), there was a disparity in number of studies per country with research biased towards four countries (Tanzania [25%], Nigeria [9%], Ethiopia [9%], Kenya [8%]) accounting for 51% of all rodent pest research in the Afro-Malagasy region. There was a disparity in the research themes addressed by Tanzanian publications compared to publications from the rest of the Afro-Malagasy region where research in Tanzania had a much more applied focus (50%) compared to a more basic research approach (92%) in the rest of the Afro-Malagasy region. We found that pest rodents have a significant negative effect on the Afro-Malagasy small-holder farming communities. Crop losses varied between cropping stages, storage and crops and the highest losses occurred during early cropping stages (46% median loss during seedling stage) and the mature stage (15% median loss). There was a scarcity of studies investigating the effectiveness of various management actions on rodent pest damage and population abundance. Our analysis highlights that there are inadequate empirical studies focused on developing sustainable control methods for rodent pests and rodent pests in the Africa-Malagasy context is generally ignored as a research topic
    corecore