825 research outputs found

    Moving wall, continuous flow electronphoresis apparatus

    Get PDF
    This invention relates generally to electrophoresis devices and more particularly to a moving wall, continuous flow device in which an electrophoresis chamber is angularly positionable with respect to the direction of moving belt walls. A frame with an electrophoresis chamber is rotatably supported between two synchronously driven belt walls. This allows the chamber to be angularly positionable with respect to the direction of belt travel, which compensates for electroosmotic flow within the electrophoresis chamber. Injection of a buffer solution via an opening and a homogenous sample stream via another opening is performed at the end of a chamber, and collection of buffer and the fractionated species particles is done by a conventional collection array at an opposite end of the chamber. Belts are driven at a rate which exactly matches the flow of buffer and sample through the chamber, which entrains the buffer to behave as a rigid electrophoretic medium, eliminating flow distortions (Poiseuille effect). Additionally, belt material for each belt is stored at one end of the device and is taken up by drive wheels at an opposite end. The novelty of this invention particularly lies in the electrophoresis chamber being angularly positionable between two moving belt walls in order to compensate for electroosmotic flow. Additionally, new belt material is continuously exposed within the chamber, minimizing flow distortion due to contamination of the belt material by the sample

    Preparative electrophoresis for space

    Get PDF
    A premise of continuous flow electrophoresis is that removal of buoyance-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chamber are used, distortion of the injected sample stream due to electrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field were not considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection

    Hollow fiber clinostat for simulating microgravity in cell culture

    Get PDF
    A clinostat for simulating microgravity on cell systems carried in a fiber fixedly mounted in a rotatable culture vessel is disclosed. The clinostat is rotated horizontally along its longitudinal axis to simulate microgravity or vertically as a control response. Cells are injected into the fiber and the ends of the fiber are sealed and secured to spaced end pieces of a fiber holder assembly which consists of the end pieces, a hollow fiber, a culture vessel, and a tension spring with three alignment pins. The tension spring is positioned around the culture vessel with its ends abutting the end pieces for alignment of the spring. After the fiber is secured, the spring is decompressed to maintain tension on the fiber while it is being rotated. This assures that the fiber remains aligned along the axis of rotation. The fiber assembly is placed in the culture vessel and culture medium is added. The culture vessel is then inserted into the rotatable portion of the clinostat and subjected to rotate at selected rpms. The internal diameter of the hollow fiber determines the distance the cells are from the axis of rotation

    Drop deployment system for crystal growth apparatus

    Get PDF
    A crystal growth apparatus is presented. It utilizes a vapor diffusion method for growing protein crystals, and particularly such an apparatus wherein a ball mixer is used to mix the fluids that form a drop within which crystals are grown. Particular novelty of this invention lies in utilizing a ball mixer to completely mix the precipitate and protein solutions prior to forming the drop. Additional novelty lies in details of construction of the vials, the fluid deployment system, and the fluid storage system of the preferred embodiment

    Continuous flow electrophoresis system experiments on shuttle flights STS-6 and STS-7

    Get PDF
    The development of a space continuous flow electrophoresis system (CFES) is discussed. The objectives of the experiment were: (1) to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the McDonnell Douglass CFES instrument and compare its separation resolution and sample throughput with related devices on Earth, and (2) to expand the basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Hemoglobin and polysaccharide were selected as samples of concentration effects. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was principally due to the mismatch of electrical conductivity between the sample and buffer

    Portable parallel stochastic optimization for the design of aeropropulsion components

    Get PDF
    This report presents the results of Phase 1 research to develop a methodology for performing large-scale Multi-disciplinary Stochastic Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The current research recognizes that such design optimization problems are computationally expensive, and require the use of either massively parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain, and that uncertainty must be considered explicitly to achieve optimum performance and cost. The objective of this Phase 1 research was to initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms, while achieving efficient, large-scale parallelism when multiple processors are available. The first effort in the project was a literature review of available computer hardware, as well as review of portable, parallel programming environments. The first effort was to implement the MSO methodology for a problem using the portable parallel programming language, Parallel Virtual Machine (PVM). The third and final effort was to demonstrate the example on a variety of computers, including a distributed-memory multiprocessor, a distributed-memory network of workstations, and a single-processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 128-node distributed-memory multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high parallel efficiencies (75 percent for 31 processors and 60 percent for 50 processors) were also achieved for computation of aerodynamic influence coefficients on the Intel. Finally, the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to be highly efficient. The same parallel code instructions were used on both platforms, demonstrating portability. There are many applications for which MSO can be applied, including NASA's High-Speed-Civil Transport, and advanced propulsion systems. The use of MSO will reduce design and development time and testing costs dramatically

    Emission Line Galaxies in the STIS Parallel Survey II: Star Formation Density

    Get PDF
    We present the luminosity function of [OII]-emitting galaxies at a median redshift of z=0.9, as measured in the deep spectroscopic data in the STIS Parallel Survey (SPS). The luminosity function shows strong evolution from the local value, as expected. By using random lines of sight, the SPS measurement complements previous deep single field studies. We calculate the density of inferred star formation at this redshift by converting from [OII] to H-alpha line flux as a function of absolute magnitude and find rho_dot=0.043 +/- 0.014 Msun/yr/Mpc^3 at a median redshift z~0.9 within the range 0.46<z<1.415 (H_0 = 70 km/s/Mpc, Omega_M=0.3, Omega_Lambda=0.7. This density is consistent with a (1+z)^4 evolution in global star formation since z~1. To reconcile the density with similar measurements made by surveys targeting H-alpha may require substantial extinction correction.Comment: 16 preprint pages including 5 figures; accepted for publication in Ap

    Drop deployment system for crystal growth apparatus

    Get PDF
    This invention relates to a crystal growth apparatus (10) generally used for growing protein crystals wherein a vapor diffusion method is used for growing the crystals. In this apparatus, a precipitating solution and a solution containing dissolved crystalline material are stored in separate vials (12, 14), each having a resilient diaphragm (28) across one end and an opening (24) with a puncturable septum (26) thereacross at an opposite end. The vials are placed in receptacles (30) having a manifold (41) with a manifold diaphragm (42) in contact with the vial diaphragm at one end of the receptacle and a hollow needle (36) for puncturing the septum at the other end of the manifold. The needles of each vial communicate with a ball mixer (40) that mixes the precipitate and protein solutions and directs the mixed solution to a drop support (64) disposed in a crystal growth chamber (16), the drop support being a tube with an inner bevelled surface (66) that provides more support for the drop (68) than the tubes of the prior art. A sealable storage region (70) intermediate the drop support and mixer provides storage of the drop (68) and the grown crystals

    Role of dielectric constant in electrohydrodynamics of conducting fluids

    Get PDF
    Electrohydrodynamic sample distortion during continuous flow electrophoresis is an experiment to be conducted during the second International Microgravity Laboratory (IML-2) in July 1994. The specific objective of this experiment is the distortion caused by the difference in dielectric constant between the sample and surrounding buffer. Although the role of sample conductivity in electrohydrodynamic has been the subject of both flight and ground experiments, the separate role of dielectric constant, independent of sample conductivity, has not been measured. This paper describes some of the laboratory research and model development that will support the flight experiment on IML-2
    corecore