71 research outputs found

    SLC5A5 (solute carrier family 5 (sodium iodide symporter), member 5)

    Get PDF
    Review on SLC5A5 (solute carrier family 5 (sodium iodide symporter), member 5), with data on DNA, on the protein encoded, and where the gene is implicated

    Prevalence of the single-nucleotide polymorphism rs11554137 (IDH1105GGT) in brain tumors of a cohort of Italian patients

    Get PDF
    IDH mutational status is required for proper diagnosis according to the WHO criteria revised in 2016. The single nucleotide polymorphism (SNP) rs11554137 (IDH1105GGT) at codon 105 of IDH1 has been reported in patients with several tumor types, including those with glioma. The aim of this study is to investigate the prevalence of IDH1105GGTin a cohort of brain tumors, and its association with clinicopathologic features and IDH1 and IDH2 missense mutations. Exon 4 of IDH1 and IDH2 was analyzed in a series of brain tumors classified according to current WHO criteria. DNA from control individuals was analyzed to infer the prevalence of IDH1105GGTin the reference population. Analysis was performed using next generation sequencing. IDH1105GGTwas three times more frequent in patients with tumors (44/293 cases, 15.0%) vs. population controls (6/109, 5.5%) (p = 0.0102). IDH1105GGTwas more frequent in grade III tumors (26.1%) compared to grade II (10.9%, p = 0.038) and grade IV tumors (13.7%, p = 0.041). IDH1105GGTwas more frequent in grade II and III tumors without an IDH tumor missense mutation (43.8%) than in those with (11.5%, p = 0.005). The IDH1105GGTSNP likely represents an important genetic marker, worthy of additional investigation to better understand the clinical and biological features of IDH-WT infiltrating gliomas

    Detection of human parvovirus B19 in papillary thyroid carcinoma

    Get PDF
    To evaluate whether parvovirus B19, a common human pathogen, was also involved in papillary thyroid carcinoma (PTC), 112 paraffin-embedded thyroid specimens of benign nodules, papillary, medullary and follicular carcinomas, and normal controls were examined for B19 DNA and capsid protein by nested PCR, in situ hybridisation (ISH) and immunohistochemistry (IHC). The expression of the nuclear factor-κB (NF-κB) was investigated by IHC. The results showed B19 DNA commonly exists in human thyroid tissues; however, there were significant differences between PTC group and normal controls, and between PTC and nonneoplastic adjacent tissues (P<0.001). The presence of viral DNA in PTC neoplastic epithelium was confirmed by laser-capture microdissection and sequencing of nested PCR products. B19 capsid protein in PTC group was significantly higher than that of all the control groups and nonneoplastic adjacent tissues (P⩽0.001). Compared with control groups, the activation of NF-κB in PTC group was significantly increased (P⩽0.02), except for medullary carcinomas, and the activation of NF-κB was correlated with the viral protein presence (P=0.002). Moreover, NF-κB was colocalised with B19 DNA in the neoplastic epithelium of PTC by double staining of IHC and ISH. These results indicate for the first time a possible role of B19 in pathogenesis of PTC

    Expression profile of genes regulated by activity of the Na-H exchanger NHE1

    Get PDF
    BACKGROUND: In mammalian cells changes in intracellular pH (pH(i)), which are predominantly controlled by activity of plasma membrane ion exchangers, regulate a diverse range of normal and pathological cellular processes. How changes in pH(i )affect distinct cellular processes has primarily been determined by evaluating protein activities and we know little about how pH(i )regulates gene expression. RESULTS: A global profile of genes regulated in mammalian fibroblasts by decreased pH(i )induced by impaired activity of the plasma membrane Na-H exchanger NHE1 was characterized by using cDNA microarrays. Analysis of selected genes by quantitative RT-PCR, TaqMan, and immunoblot analyses confirmed results obtained from cDNA arrays. Consistent with established roles of pH(i )and NHE1 activity in cell proliferation and oncogenic transformation, grouping regulated genes into functional categories and biological pathways indicated a predominant number of genes with altered expression were associated with growth factor signaling, oncogenesis, and cell cycle progression. CONCLUSION: A comprehensive analysis of genes selectively regulated by pH(i )provides insight on candidate targets that might mediate established effects of pH(i )on a number of normal and pathological cell functions

    NrCAM, a neuronal system cell-adhesion molecule, is induced in papillary thyroid carcinomas

    Get PDF
    NrCAM (neuron-glia-related cell-adhesion molecule) is primarily, although not solely, expressed in the nervous system. In the present study, NrCAM expression was analysed in a series (46) of papillary thyroid carcinomas (PTCs) and paired normal tissues (NT). Quantitative reverse transcriptase (QRT)-PCR revealed that NrCAM expression was upregulated in all PTCs compared to normal thyroid, whatever the stage or size of the primary tumour. NrCAM transcript levels were 1.3- to 30.7-fold higher in PTCs than in NT. Immunohistochemistry (IHC) confirmed that the expression of NrCAM was considerably higher in tumours (score 2+/3+) than in adjacent normal paratumoural thyroid tissue. The NrCAM protein was detected in all but three (93.3%) PTC samples, and it was mainly cytoplasmic; in some cases there was additional membranous localisation – basolateral and partly apical. In the normal thyroid and tissues surrounding tumours, focal NrCAM immunolabelling was seen only in follicles containing tall cells, where staining was restricted to the apical pole of thyrocytes. Western blot analysis corroborated the QRT–PCR and IHC results, showing higher NrCAM protein levels in PTCs than in paired NT. The level of overexpression of the NrCAM mRNA in tumourous tissue appeared to be independent of the primary tumour stage (pT) or the size of the PTC. These data provide the first evidence that NrCAM is overexpressed in human PTCs at the mRNA and protein levels, whatever the tumour stage. Thus, the induction and upregulation of NrCAM expression could be implicated in the pathogenesis and behaviour of papillary thyroid cancers

    Current opinion on the role of testosterone in the development of prostate cancer: a dynamic model

    Get PDF
    Background: Since the landmark study conducted by Huggins and Hodges in 1941, a failure to distinguish between the role of testosterone in prostate cancer development and progression has led to the prevailing opinion that high levels of testosterone increase the risk of prostate cancer. To date, this claim remains unproven. Presentation of the Hypothesis: We present a novel dynamic mode of the relationship between testosterone and prostate cancer by hypothesizing that the magnitude of age-related declines in testosterone, rather than a static level of testosterone measured at a single point, may trigger and promote the development of prostate cancer. Testing of the Hypothesis: Although not easily testable currently, prospective cohort studies with population-representative samples and repeated measurements of testosterone or retrospective cohorts with stored blood samples from different ages are warranted in future to test the hypothesis. Implications of the Hypothesis: Our dynamic model can satisfactorily explain the observed age patterns of prostate cancer incidence, the apparent conflicts in epidemiological findings on testosterone and risk of prostate cancer, racial disparities in prostate cancer incidence, risk factors associated with prostate cancer, and the role of testosterone in prostate cancer progression. Our dynamic model may also have implications for testosterone replacement therapy

    Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence

    Get PDF
    A major public health goal is to determine linkages between specific pollution sources and adverse health outcomes. This paper provides an integrative evaluation of the database examining effects of vehicular emissions, such as black carbon (BC), carbonaceous gasses, and ultrafine PM, on cardiovascular (CV) morbidity and mortality. Less than a decade ago, few epidemiological studies had examined effects of traffic emissions specifically on these health endpoints. In 2002, the first of many studies emerged finding significantly higher risks of CV morbidity and mortality for people living in close proximity to major roadways, vs. those living further away. Abundant epidemiological studies now link exposure to vehicular emissions, characterized in many different ways, with CV health endpoints such as cardiopulmonary and ischemic heart disease and circulatory-disease-associated mortality; incidence of coronary artery disease; acute myocardial infarction; survival after heart failure; emergency CV hospital admissions; and markers of atherosclerosis. We identify numerous in vitro, in vivo, and human panel studies elucidating mechanisms which could explain many of these cardiovascular morbidity and mortality associations. These include: oxidative stress, inflammation, lipoperoxidation and atherosclerosis, change in heart rate variability (HRV), arrhythmias, ST-segment depression, and changes in vascular function (such as brachial arterial caliber and blood pressure). Panel studies with accurate exposure information, examining effects of ambient components of vehicular emissions on susceptible human subjects, appear to confirm these mechanisms. Together, this body of evidence supports biological mechanisms which can explain the various CV epidemiological findings. Based upon these studies, the research base suggests that vehicular emissions are a major environmental cause of cardiovascular mortality and morbidity in the United States. As a means to reduce the public health consequences of such emissions, it may be desirable to promulgate a black carbon (BC) PM2.5 standard under the National Ambient Air Quality Standards, which would apply to both on and off-road diesels. Two specific critical research needs are identified. One is to continue research on health effects of vehicular emissions, gaseous as well as particulate. The second is to utilize identical or nearly identical research designs in studies using accurate exposure metrics to determine whether other major PM pollutant sources and types may also underlie the specific health effects found in this evaluation for vehicular emissions
    corecore