49 research outputs found

    Low frequency of somatic mutations in the FH/multiple cutaneous leiomyomatosis gene in sporadic leiomyosarcomas and uterine leiomyomas

    Get PDF
    Germline mutations in the fumarate hydratase gene at 1q43 predispose to dominantly inherited skin and uterine leiomyomata and leiomyosarcomas. The enzyme, which is a component of the tricarboxylic acid cycle, acts as a tumour suppressor. To evaluate fumarate hydratase in respective sporadic tumours, we analysed a series of 26 leiomyosarcomas and 129 uterine leiomyomas (from 21 patients) for somatic mutations in fumarate hydratase and allelic imbalance around 1q43. None of the 26 leiomyosarcomas harboured somatic mutations in fumarate hydratase. Fifty per cent of leiomysarcomas tested showed evidence of allelic imbalance at 1q, but this was not confined to the vicinity of fumarate hydratase. Only 5% (seven out of 129) of the leiomyomas showed allele imbalance at 1q42-q43 and no somatic mutations in fumarate hydratase were observed. Our findings indicate that mutations in fumarate hydratase do not play a major role in the development of sporadic leiomyosarcomas or uterine leiomyomas

    New targets for therapy in breast cancer: Mammalian target of rapamycin (mTOR) antagonists

    Get PDF
    Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biologic functions such as transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In breast cancer this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. There is evidence suggesting that Akt promotes breast cancer cell survival and resistance to chemotherapy, trastuzumab, and tamoxifen. Rapamycin is a specific mTOR antagonist that targets this pathway and blocks the downstream signaling elements, resulting in cell cycle arrest in the G(1 )phase. Targeting the Akt/PI3K pathway with mTOR antagonists may increase the therapeutic efficacy of breast cancer therapy

    Mutation in the PTEN/MMAC1 gene in archival low grade and high grade gliomas

    Get PDF
    The PTEN gene, located on 10q23.3, has recently been described as a candidate tumour suppressor gene that may be important in the development of advanced cancers, including gliomas. We have investigated mutation in the PTEN gene by direct sequence analysis of PCR products amplified from samples microdissected from 19 low grade (WHO Grade I and II) and 27 high grade (WHO grade III and IV) archival, formalin-fixed, paraffin-embedded gliomas. Eleven genetic variants in ten tumours have been identified. Eight of these are DNA sequence changes that could affect the encoded protein and were present in 0/2 pilocytic astrocytomas, 0/2 oligoastrocytomas, 0/1 oligodendroglioma, 0/14 astrocytomas, 3/13 (23%) anaplastic astrocytomas and 5/14 (36%) glioblastomas. PTEN mutations were found exclusively in high grade gliomas; this finding was statistically significant. Only two of the PTEN genetic variants have been reported in other studies; two of the genetic changes are in codons in which mutations have not been found previously. The results of this study indicate that mutation in the PTEN gene is present only in histologically more aggressive gliomas, may be associated with the transition from low histological grade to anaplasia, but is absent from the majority of high grade gliomas. © 1999 Cancer Research Campaig

    TP53 mutations in ovarian carcinomas from sporadic cases and carriers of two distinct BRCA1 founder mutations; relation to age at diagnosis and survival

    Get PDF
    BACKGROUND: Ovarian carcinomas from 30 BRCA1 germ-line carriers of two distinct high penetrant founder mutations, 20 carrying the 1675delA and 10 the 1135insA, and 100 sporadic cases were characterized for somatic mutations in the TP53 gene. We analyzed differences in relation to BRCA1 germline status, TP53 status, survival and age at diagnosis, as previous studies have not been conclusive. METHODS: DNA was extracted from paraffin embedded formalin fixed tissues for the familial cases, and from fresh frozen specimen from the sporadic cases. All cases were treated at our hospital according to protocol. Mutation analyses of exon 2 – 11 were performed using TTGE, followed by sequencing. RESULTS: Survival rates for BRCA1-familial cases with TP53 mutations were not significantly lower than for familial cases without TP53 mutations (p = 0.25, RR = 1.64, 95% CI [0.71–3.78]). Median age at diagnosis for sporadic (59 years) and familial (49 years) cases differed significantly (p < 0.001) with or without TP53 mutations. Age at diagnosis between the two types of familial carriers were not significantly different, with median age of 47 for 1675delA and 52.5 for 1135insA carriers (p = 0.245). For cases ≥50 years at diagnosis, a trend toward longer survival for sporadic over familial cases was observed (p = 0.08). The opposite trend was observed for cases <50 years at diagnosis. CONCLUSION: There do not seem to be a protective advantage for familial BRCA1 carriers without TP53 mutations over familial cases with TP53 mutations. However, there seem to be a trend towards initial advantage in survival for familial cases compared to sporadic cases diagnosed before the age of 50 both with and without TP53 mutations. However, this trend diminishes over time and for cases diagnosed ≥50 years the sporadic cases show a trend towards an advantage in survival over familial cases. Although this data set is small, if confirmed, this may be a link in the evidence that the differences in ovarian cancer survival reported, are not due to the type of BRCA1 mutation, but may be secondary to genetic factors shared. This may have clinical implications for follow-up such as prophylactic surgery within carriers of the two most frequent Norwegian BRCA1 founder mutations

    Exclusion of a major role for the PTEN tumour-suppressor gene in breast carcinomas

    Get PDF
    PTEN is a novel tumour-suppressor gene located on chromosomal band 10q23.3. This region displays frequent loss of heterozygosity (LOH) in a variety of human neoplasms including breast carcinomas. The detection of PTEN mutations in Cowden disease and in breast carcinoma cell lines suggests that PTEN may be involved in mammary carcinogenesis. We here report a mutational analysis of tumour specimens from 103 primary breast carcinomas and constitutive DNA from 25 breast cancer families. The entire coding region of PTEN was screened by single-strand conformation polymorphism (SSCP) analysis and direct sequencing using intron-based primers. No germline mutations could be identified in the breast cancer families and only one sporadic carcinoma carried a PTEN mutation at one allele. In addition, all sporadic tumours were analysed for homozygous deletions by differential polymerase chain reaction (PCR) and for allelic loss using the microsatellite markers D10S215, D10S564 and D10S573. No homozygous deletions were detected and only 10 out of 94 informative tumours showed allelic loss in the PTEN region. These results suggest that PTEN does not play a major role in breast cancer formation. 1999 Cancer Research Campaig

    PTEN deficiency: a role in mammary carcinogenesis

    Get PDF
    The PTEN gene is often mutated in primary human tumors and cell lines, but the low rate of somatic PTEN mutation in human breast cancer has led to debate over the role of this tumor suppressor in this disease. The involvement of PTEN in human mammary oncogenesis has been implicated from studies showing that germline PTEN mutation in Cowden disease predisposes to breast cancer, the frequent loss of heterozygosity at the PTEN locus, and reduced PTEN protein levels in sporadic breast cancers. To assay the potential contribution of PTEN loss in breast tumor promotion, Li et al. [1] crossed Pten heterozygous mice with mouse mammary tumor virus-Wnt-1 transgenic (Wnt-1 TG, Pten+/-) mice. Mammary ductal carcinoma developed earlier in Wnt-1 TG, Pten+/- mice than in mice bearing either genetic change alone, and showed frequent loss of the remaining wild-type PTEN allele. These data indicate a role for PTEN in breast tumorigenesis in an in vivo model

    DNA Methylation Profiles of Primary Colorectal Carcinoma and Matched Liver Metastasis

    Get PDF
    BACKGROUND: The contribution of DNA methylation to the metastatic process in colorectal cancers (CRCs) is unclear. METHODS: We evaluated the methylation status of 13 genes (MINT1, MINT2, MINT31, MLH1, p16, p14, TIMP3, CDH1, CDH13, THBS1, MGMT, HPP1 and ERα) by bisulfite-pyrosequencing in 79 CRCs comprising 36 CRCs without liver metastasis and 43 CRCs with liver metastasis, including 16 paired primary CRCs and liver metastasis. We also performed methylated CpG island amplification microarrays (MCAM) in three paired primary and metastatic cancers. RESULTS: Methylation of p14, TIMP3 and HPP1 in primary CRCs progressively decreased from absence to presence of liver metastasis (13.1% vs. 4.3%; 14.8% vs. 3.7%; 43.9% vs. 35.8%, respectively) (P<.05). When paired primary and metastatic tumors were compared, only MGMT methylation was significantly higher in metastatic cancers (27.4% vs. 13.4%, P = .013), and this difference was due to an increase in methylation density rather than frequency in the majority of cases. MCAM showed an average 7.4% increase in DNA methylated genes in the metastatic samples. The numbers of differentially hypermethylated genes in the liver metastases increased with increasing time between resection of the primary and resection of the liver metastasis. Bisulfite-pyrosequencing validation in 12 paired samples showed that most of these increases were not conserved, and could be explained by differences in methylation density rather than frequency. CONCLUSIONS: Most DNA methylation differences between primary CRCs and matched liver metastasis are due to random variation and an increase in DNA methylation density rather than de-novo inactivation and silencing. Thus, DNA methylation changes occur for the most part before progression to liver metastasis

    Analysis of the 10q23 chromosomal region and the PTEN gene in human sporadic breast carcinoma

    Get PDF
    We examined a panel of sporadic breast carcinomas for loss of heterozygosity (LOH) in a 10-cM interval on chromosome 10 known to encompass the PTEN gene. We detected allele loss in 27 of 70 breast tumour DNAs. Fifteen of these showed loss limited to a subregion of the area studied. The most commonly deleted region was flanked by D10S215 and D10S541 and encompasses the PTEN locus. We used a combination of denaturing gradient gel electrophoresis and single-strand conformation polymorphism analyses to investigate the presence of PTEN mutations in tumours with LOH in this region. We did not detect mutations of PTEN in any of these tumours. Our data show that, in sporadic breast carcinoma, loss of heterozygosity of the PTEN locus is frequent, but mutation of PTEN is not. These results are consistent with loss of another unidentified tumour suppressor in this region in sporadic breast carcinoma. © 1999 Cancer Research Campaig

    Whole‐exome DNA

    No full text
    corecore