38 research outputs found

    Structural and Functional Basis for Substrate Specificity and Catalysis of Levan Fructotransferase

    Get PDF

    Structural basis for the substrate specificity and catalytic features of pseudouridine kinase from Arabidopsis thaliana

    Get PDF
    RNA modifications can regulate the stability of RNAs, mRNA-protein interactions, and translation efficiency. Pseudouridine is a prevalent RNA modification, and its metabolic fate after RNA turnover was recently characterized in eukaryotes, in the plant Arabidopsis thaliana. Here, we present structural and biochemical analyses of PSEUDOURIDINE KINASE from Arabidopsis (AtPUKI), the enzyme catalyzing the first step in pseudouridine degradation. AtPUKI, a member of the PfkB family of carbohydrate kinases, is a homodimeric α/β protein with a protruding small β-strand domain, which serves simultaneously as dimerization interface and dynamic substrate specificity determinant. AtPUKI has a unique nucleoside binding site specifying the binding of pseudourine, in particular at the nucleobase, by multiple hydrophilic interactions, of which one is mediated by a loop from the small β-strand domain of the adjacent monomer. Conformational transition of the dimerized small β-strand domains containing active site residues is required for substrate specificity. These dynamic features explain the higher catalytic efficiency for pseudouridine over uridine. Both substrates bind well (similar Km), but only pseudouridine is turned over efficiently. Our studies provide an example for structural and functional divergence in the PfkB family and highlight how AtPUKI avoids futile uridine phosphorylation which in vivo would disturb pyrimidine homeostasis. © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research

    Initiation of cytosolic plant purine nucleotide catabolism involves a monospecific xanthosine monophosphate phosphatase

    Get PDF
    In plants, guanosine monophosphate (GMP) is synthesized from adenosine monophosphate via inosine monophosphate and xanthosine monophosphate (XMP) in the cytosol. It has been shown recently that the catabolic route for adenylate-derived nucleotides bifurcates at XMP from this biosynthetic route. Dephosphorylation of XMP and GMP by as yet unknown phosphatases can initiate cytosolic purine nucleotide catabolism. Here we show that Arabidopsis thaliana possesses a highly XMP-specific phosphatase (XMPP) which is conserved in vascular plants. We demonstrate that XMPP catalyzes the irreversible entry reaction of adenylate-derived nucleotides into purine nucleotide catabolism in vivo, whereas the guanylates enter catabolism via an unidentified GMP phosphatase and guanosine deaminase which are important to maintain purine nucleotide homeostasis. We also present a crystal structure and mutational analysis of XMPP providing a rationale for its exceptionally high substrate specificity, which is likely required for the efficient catalysis of the very small XMP pool in vivo

    Structural and Functional Analysis of Phytotoxin Toxoflavin-Degrading Enzyme

    Get PDF
    Pathogenic bacteria synthesize and secrete toxic low molecular weight compounds as virulence factors. These microbial toxins play essential roles in the pathogenicity of bacteria in various hosts, and are emerging as targets for antivirulence strategies. Toxoflavin, a phytotoxin produced by Burkholderia glumae BGR1, has been known to be the key factor in rice grain rot and wilt in many field crops. Recently, toxoflavin-degrading enzyme (TxDE) was identified from Paenibacillus polymyxa JH2, thereby providing a possible antivirulence strategy for toxoflavin-mediated plant diseases. Here, we report the crystal structure of TxDE in the substrate-free form and in complex with toxoflavin, along with the results of a functional analysis. The overall structure of TxDE is similar to those of the vicinal oxygen chelate superfamily of metalloenzymes, despite the lack of apparent sequence identity. The active site is located at the end of the hydrophobic channel, 9 Ă… in length, and contains a Mn(II) ion interacting with one histidine residue, two glutamate residues, and three water molecules in an octahedral coordination. In the complex, toxoflavin binds in the hydrophobic active site, specifically the Mn(II)-coordination shell by replacing a ligating water molecule. A functional analysis indicated that TxDE catalyzes the degradation of toxoflavin in a manner dependent on oxygen, Mn(II), and the reducing agent dithiothreitol. These results provide the structural features of TxDE and the early events in catalysis

    Gene Context Analysis Reveals Functional Divergence between Hypothetically Equivalent Enzymes of the Purine-Ureide Pathway

    No full text
    A major problem of genome annotation is the assignment of a function to a large number of genes of known sequences through comparison with a relatively small number of experimentally characterized genes. Because functional divergence is a widespread phenomenon in gene evolution, the transfer of a function to homologous genes is not a trivial exercise. Here, we show that a family of homologous genes which are found in purine catabolism clusters and have hypothetically equivalent functions can be divided into two distinct groups based on the genomic distribution of functionally related genes. One group (UGLYAH) encodes proteins that are able to release ammonia from (S)-ureidoglycine, the enzymatic product of allantoate amidohydrolase (AAH), but are unable to degrade allantoate. The presence of a gene encoding UGLYAH implies the presence of AAH in the same genome. The other group (UGLYAH2) encodes proteins that are able to release ammonia from (S)-ureidoglycine as well as urea from allantoate. The presence of a gene encoding UGLYAH2 implies the absence of AAH in the same genome. Because (S)-ureidoglycine is an unstable compound that is only formed by the AAH reaction, the in vivo function of this group of enzymes must be the release of urea from allantoate (allantoicase activity), while ammonia release from (S)-ureidoglycine is an accessory activity that evolved as a specialized function in a group of genes in which the coexistence with AAH was established. Insights on the active site modifications leading to a change in the enzyme activity were provided by comparison of three-dimensional structures of proteins belonging to the two different groups and by site-directed mutagenesis. Our results indicate that when the neighborhood of uncharacterized genes suggests a role in the same process or pathway of a characterized homologue, a detailed analysis of the gene context is required for the transfer of functional annotations

    Crystal structure of chloramphenicol-metabolizing enzyme EstDL136 from a metagenome.

    No full text
    Metagenomes often convey novel biological activities and therefore have gained considerable attention for use in biotechnological applications. Recently, metagenome-derived EstDL136 was found to possess chloramphenicol (Cm)-metabolizing features. Sequence analysis showed EstDL136 to be a member of the hormone-sensitive lipase (HSL) family with an Asp-His-Ser catalytic triad and a notable substrate specificity. In this study, we determined the crystal structures of EstDL136 and in a complex with Cm. Consistent with the high sequence similarity, the structure of EstDL136 is homologous to that of the HSL family. The active site of EstDL136 is a relatively shallow pocket that could accommodate Cm as a substrate as opposed to the long acyl chain substrates typical of the HSL family. Mutational analyses further suggested that several residues in the vicinity of the active site play roles in the Cm-binding of EstDL136. These results provide structural and functional insights into a metagenome-derived EstDL136
    corecore