6 research outputs found

    West Nile virus transmission. results from the integrated surveillance system in Italy, 2008 to 2015

    Get PDF
    IIn Italy a national Plan for the surveillance of imported and autochthonous human vector-borne diseases (chikungunya, dengue, Zika virus disease and West Nile virus (WNV) disease) that integrates human and veterinary (animals and vectors) surveillance, is issued and revised annually according with the observed epidemiological changes. Here we describe results of the WNV integrated veterinary and human surveillance systems in Italy from 2008 to 2015. A real time data exchange protocol is in place between the surveillance systems to rapidly identify occurrence of human and animal cases and to define and update the map of affected areas i.e. provinces during the vector activity period from June to October. WNV continues to cause severe illnesses in Italy during every transmission season, albeit cases are sporadic and the epidemiology varies by virus lineage and geographic area. The integration of surveillance activities and a multidisciplinary approach made it possible and have been fundamental in supporting implementation of and/or strengthening preventive measures aimed at reducing the risk of transmission of WNV trough blood, tissues and organ donation and to implementing further measures for vector control

    Diagnosis of Imported Dengue and Zika Virus Infections in Italy from November 2015 to November 2022: Laboratory Surveillance Data from a National Reference Laboratory

    Get PDF
    Dengue (DENV) and Zika (ZIKV) viruses are mosquito-borne human pathogens. In Italy, the presence of the competent vector Aedes albopictus increases the risk of autochthonous transmission, and a national plan for arboviruses prevention, surveillance, and response (PNA 2020–2025) is in place. The results of laboratory diagnosis of both viruses by the National Reference Laboratory for arboviruses (NRLA) from November 2015 to November 2022 are presented. Samples from 655 suspected cases were tested by both molecular and serological assays. Virus and antibody kinetics, cross-reactivity, and diagnostic performance of IgM ELISA systems were analysed. Of 524 cases tested for DENV, 146 were classified as confirmed, 7 as probable, while 371 were excluded. Of 619 cases tested for ZIKV, 44 were classified as confirmed, while 492 were excluded. All cases were imported. Overall, 75.3% (110/146) of DENV and 50% (22/44) of ZIKV cases were confirmed through direct virus detection methods. High percentages of cross reactivity were observed between the two viruses. The median lag time from symptoms onset to sample collection was 7 days for both DENV molecular (range 0–20) and NS1 ELISA (range 0–48) tests, with high percentages of positivity also after 7 days (39% and 67%, respectively). For ZIKV, the median lag time was 5 days (range 0–22), with 16% positivity after 7 days. Diagnostic performance was assessed with negative predictive values ranging from 92% to 95% for the anti-DENV systems, and of 97% for the ZIKV one. Lower positive predictive values were seen in the tested population (DENV: 55% to 91%, ZIKV: 50%). DENV and ZIKV diagnosis by molecular test is the gold standard, but sample collection time is a limitation. Serological tests, including Plaque Reduction Neutralization Test, are thus necessary. Co-circulation and cross-reactivity between the two viruses increase diagnostic difficulty. Continuous evaluation of diagnostic strategies is essential to improve laboratory testing

    Transmission Potential of Chikungunya Virus and Control Measures: The Case of Italy

    Get PDF
    During summer 2007 Italy has experienced an epidemic caused by Chikungunya virus – the first large outbreak documented in a temperate climate country – with approximately 161 laboratory confirmed cases concentrated in two bordering villages in North–Eastern Italy comprising 3,968 inhabitants. The seroprevalence was recently estimated to be 10.2%. In this work we provide estimates of the transmission potential of the virus and we assess the efficacy of the measures undertaken by public health authorities to control the epidemic spread. To such aim, we developed a model describing the temporal dynamics of the competent vector, known as Aedes albopictus, explicitly depending on climatic factors, coupled to an epidemic transmission model describing the spread of the epidemic in both humans and mosquitoes. The cumulative number of notified cases predicted by the model was 185 on average (95% CI 117–278), in good agreement with observed data. The probability of observing a major outbreak after the introduction of an infective human case was estimated to be in the range of 32%–76%. We found that the basic reproduction number was in the range of 1.8–6 but it could have been even larger, depending on the density of mosquitoes, which in turn depends on seasonal meteorological effects, besides other local abiotic factors. These results confirm the increasing risk of tropical vector–borne diseases in temperate climate countries, as a consequence of globalization. However, our results show that an epidemic can be controlled by performing a timely intervention, even if the transmission potential of Chikungunya virus is sensibly high

    Rapid inactivation of SARS-CoV-2 with LED irradiation of visible spectrum wavelengths

    No full text
    Difficulty in controlling SARS-CoV-2 transmission made the ability to inactivate viruses in aerosols and fomites to be an important and attractive risk reduction measure. Evidence that light frequencies have the ability to inhibit microorganisms has already been reported by many studies which, however, focused on ultraviolet (UV) wavelengths, which are known to induce potential injury in humans. In the present study, the effect on suspensions of SARS-CoV-2 of a Light Emitting Diode (LED) device capable of radiating frequencies in the non- hazardous visible light spectrum (VIS) was investigated. In order to evaluate the efficiency of viral inactivation, plaque assay and western blot of viral proteins were performed. The observed results showed a significant reduction in infectious particles that had been exposed to the LED irradiation of visible light. Furthermore, the analysis of the intracellular expression of viral proteins confirmed the inactivating effect of this irradiation technology. This in vitro study revealed for the first time the inactivation of SARS-CoV-2 through LED irradiation with multiple wavelengths of the visible spectrum. However additional and more in-depth studies can aim to demonstrate the data obtained during these experiments in different matrices, in mutable environmental conditions and on other respiratory viruses such as the influenza virus. The type of LED technology can decisively contribute on reducing virus transmission through the continuous sanitation of common environments without risks for humans and animals
    corecore