15 research outputs found

    Immunohistochemical research of reaction of motoneurons of lumbar spinal cord of the mice that were in 30-day flight on the BION-M1 biosatellite on a week readaptation to conditions of Earth gravitation

    Get PDF
    © 2016, Human Stem Cell Institute. All rights reserved.Earlier, by an immunohistochemical method we define that after 30-day space flight in motoneurons of mice lumbar spinal cord immunoexpression of the proteins responsible for synaptic transfer of a nervous impulse and proteins of heat shock proteins decrease. In this research for an assessment of animals recovery process dynamics after space flight we studied an immunoexpression of the proteins participating in synaptic transfer of a nervous impulse (synaptophisyne, and PSD95), neurotrophic factors (a vascular endothelial factor of growth - VEGF and its receptor - Flt-1) and heat shock proteins (Hsp25 and Hsp70) in motoneurons of lumbar spinal cord of a mice after 30-day space flight on the BION-M1 biosatellite and the subsequent week readaptation to conditions of Earth gravitation. In this research by immunohistochemical method determine that after a week of animals staying in the Earth gravitation conditions the immunoexpression of synaptophisyne continued to decrease while the expression of PSD95, Hsp25, Hsp70 and VEGF increased in relation to the animals removed from experiment right after 30-day flight. The obtained data confirm functional plasticity of spinal cord motoneurons in the conditions of gravitation force changing. The fact, which is especially interesting, that "switches on" of neurons protective mechanisms (strengthening of heat shock proteins and neurotrophic factor expression) happens not in response to hypogravitation influence, but only a week after return of animals to conditions of Earth gravitation

    Myelinated fibers of the mouse spinal cord after a 30-day space flight

    Get PDF
    © 2016, Pleiades Publishing, Ltd.Myelinated fibers and myelin-forming cells in the spinal cord at the L3–L5 level were studied in C57BL/6N mice that had spent 30 days in space. Signs of destruction of myelin in different areas of white matter, reduction of the thickness of myelin sheath and axon diameter, decreased number of myelin-forming cells were detected in “flight” mice. The stay of mice in space during 30 days had a negative impact on the structure of myelinated fibers and caused reduced expression of the markers myelin-forming cells. These findings can complement the pathogenetic picture of the development of hypogravity motor syndrome

    Immunohistochemical research of reaction of motoneurons of lumbar spinal cord of the mice that were in 30-day flight on the BION-M1 biosatellite on a week readaptation to conditions of Earth gravitation

    Get PDF
    © 2016, Human Stem Cell Institute. All rights reserved.Earlier, by an immunohistochemical method we define that after 30-day space flight in motoneurons of mice lumbar spinal cord immunoexpression of the proteins responsible for synaptic transfer of a nervous impulse and proteins of heat shock proteins decrease. In this research for an assessment of animals recovery process dynamics after space flight we studied an immunoexpression of the proteins participating in synaptic transfer of a nervous impulse (synaptophisyne, and PSD95), neurotrophic factors (a vascular endothelial factor of growth - VEGF and its receptor - Flt-1) and heat shock proteins (Hsp25 and Hsp70) in motoneurons of lumbar spinal cord of a mice after 30-day space flight on the BION-M1 biosatellite and the subsequent week readaptation to conditions of Earth gravitation. In this research by immunohistochemical method determine that after a week of animals staying in the Earth gravitation conditions the immunoexpression of synaptophisyne continued to decrease while the expression of PSD95, Hsp25, Hsp70 and VEGF increased in relation to the animals removed from experiment right after 30-day flight. The obtained data confirm functional plasticity of spinal cord motoneurons in the conditions of gravitation force changing. The fact, which is especially interesting, that "switches on" of neurons protective mechanisms (strengthening of heat shock proteins and neurotrophic factor expression) happens not in response to hypogravitation influence, but only a week after return of animals to conditions of Earth gravitation

    Bioinformatic Analysis of the Sciatic Nerve Transcriptomes of Mice after 30-Day Spaceflight on Board the Bion-M1 Biosatellite

    No full text
    © 2019, Pleiades Publishing, Inc. Abstract: Comparative bioinformatic analysis of sciatic nerve transcriptomes of C57BL/6J mice was carried out. Animals were divided into three groups: Flight, 30-day spaceflight; Recovery, 30-day spaceflight with subsequent 7-day readaptation; and Control. A significant pool of genes with an absolute difference in expression of more than 32 times compared to the control group was revealed in mice after the 30-day spaceflight (Flight and Recovery groups). Comparative analysis of the Flight and Recovery groups of murine transcriptomes did not reveal any significant differences in gene expression. In animals after spaceflight on board the biosatellite, using the KEGG database (Kyoto Encyclopedia of Genes and Genomes), we identified genes related to the state of metabolic and signaling pathways involved in actin cytoskeleton regulation, regulation of potential-dependent calcium, sodium, and potassium channels, and myelination of nerve fibers

    Myelinated fibers of the mouse spinal cord after a 30-day space flight

    No full text
    © 2016, Pleiades Publishing, Ltd.Myelinated fibers and myelin-forming cells in the spinal cord at the L3–L5 level were studied in C57BL/6N mice that had spent 30 days in space. Signs of destruction of myelin in different areas of white matter, reduction of the thickness of myelin sheath and axon diameter, decreased number of myelin-forming cells were detected in “flight” mice. The stay of mice in space during 30 days had a negative impact on the structure of myelinated fibers and caused reduced expression of the markers myelin-forming cells. These findings can complement the pathogenetic picture of the development of hypogravity motor syndrome

    Immunohistochemical research of reaction of motoneurons of lumbar spinal cord of the mice that were in 30-day flight on the BION-M1 biosatellite on a week readaptation to conditions of Earth gravitation

    No full text
    © 2016, Human Stem Cell Institute. All rights reserved.Earlier, by an immunohistochemical method we define that after 30-day space flight in motoneurons of mice lumbar spinal cord immunoexpression of the proteins responsible for synaptic transfer of a nervous impulse and proteins of heat shock proteins decrease. In this research for an assessment of animals recovery process dynamics after space flight we studied an immunoexpression of the proteins participating in synaptic transfer of a nervous impulse (synaptophisyne, and PSD95), neurotrophic factors (a vascular endothelial factor of growth - VEGF and its receptor - Flt-1) and heat shock proteins (Hsp25 and Hsp70) in motoneurons of lumbar spinal cord of a mice after 30-day space flight on the BION-M1 biosatellite and the subsequent week readaptation to conditions of Earth gravitation. In this research by immunohistochemical method determine that after a week of animals staying in the Earth gravitation conditions the immunoexpression of synaptophisyne continued to decrease while the expression of PSD95, Hsp25, Hsp70 and VEGF increased in relation to the animals removed from experiment right after 30-day flight. The obtained data confirm functional plasticity of spinal cord motoneurons in the conditions of gravitation force changing. The fact, which is especially interesting, that "switches on" of neurons protective mechanisms (strengthening of heat shock proteins and neurotrophic factor expression) happens not in response to hypogravitation influence, but only a week after return of animals to conditions of Earth gravitation

    Immunohistochemical research of reaction of motoneurons of lumbar spinal cord of the mice that were in 30-day flight on the BION-M1 biosatellite on a week readaptation to conditions of Earth gravitation

    No full text
    © 2016, Human Stem Cell Institute. All rights reserved.Earlier, by an immunohistochemical method we define that after 30-day space flight in motoneurons of mice lumbar spinal cord immunoexpression of the proteins responsible for synaptic transfer of a nervous impulse and proteins of heat shock proteins decrease. In this research for an assessment of animals recovery process dynamics after space flight we studied an immunoexpression of the proteins participating in synaptic transfer of a nervous impulse (synaptophisyne, and PSD95), neurotrophic factors (a vascular endothelial factor of growth - VEGF and its receptor - Flt-1) and heat shock proteins (Hsp25 and Hsp70) in motoneurons of lumbar spinal cord of a mice after 30-day space flight on the BION-M1 biosatellite and the subsequent week readaptation to conditions of Earth gravitation. In this research by immunohistochemical method determine that after a week of animals staying in the Earth gravitation conditions the immunoexpression of synaptophisyne continued to decrease while the expression of PSD95, Hsp25, Hsp70 and VEGF increased in relation to the animals removed from experiment right after 30-day flight. The obtained data confirm functional plasticity of spinal cord motoneurons in the conditions of gravitation force changing. The fact, which is especially interesting, that "switches on" of neurons protective mechanisms (strengthening of heat shock proteins and neurotrophic factor expression) happens not in response to hypogravitation influence, but only a week after return of animals to conditions of Earth gravitation

    Myelinated fibers of the mouse spinal cord after a 30-day space flight

    No full text
    © 2016, Pleiades Publishing, Ltd.Myelinated fibers and myelin-forming cells in the spinal cord at the L3–L5 level were studied in C57BL/6N mice that had spent 30 days in space. Signs of destruction of myelin in different areas of white matter, reduction of the thickness of myelin sheath and axon diameter, decreased number of myelin-forming cells were detected in “flight” mice. The stay of mice in space during 30 days had a negative impact on the structure of myelinated fibers and caused reduced expression of the markers myelin-forming cells. These findings can complement the pathogenetic picture of the development of hypogravity motor syndrome

    Myelinated fibers of the mouse spinal cord after a 30-day space flight

    Get PDF
    © 2016, Pleiades Publishing, Ltd.Myelinated fibers and myelin-forming cells in the spinal cord at the L3–L5 level were studied in C57BL/6N mice that had spent 30 days in space. Signs of destruction of myelin in different areas of white matter, reduction of the thickness of myelin sheath and axon diameter, decreased number of myelin-forming cells were detected in “flight” mice. The stay of mice in space during 30 days had a negative impact on the structure of myelinated fibers and caused reduced expression of the markers myelin-forming cells. These findings can complement the pathogenetic picture of the development of hypogravity motor syndrome
    corecore