7 research outputs found

    Data-model fusion approach using tree-ring width series, a mechanistic growth model and an Earth system model to reconstruct the large-scale climate variability

    No full text
    Tree-ring widths represent the most commonly used proxy to reconstruct the climate of the last millennium at high resolution, thanks to their large-scale availability. The approach often relies on a relationship between tree-ring width series and climate estimated on the basis of a linear regression. However, the underlying linearity and stationarity assumptions may be inadequate and dendroclimatic process-based models may be able to overcome some of those limitations. In this thesis, we have included for the first time a dendroclimatic process-based model, MAIDEN, into a data assimilation procedure in order to improve large-scale climate reconstructions. We have first developed a protocol to calibrate and apply MAIDEN to potentially any sites with tree-ring width data in the extratropical region. We have shown that MAIDEN can be applied at global scale with a good performance and that the clear benefits obtained make it an appealing candidate for large-scale paleoclimate reconstructions. Subsequently, the MAIDEN model has been successfully incorporated into a data assimilation procedure as a proxy system model allowing a robust comparison of the outputs of an Earth system model with tree-ring width observations. The procedure has been tested to reconstruct the climate variability in the Southern Hemisphere over the last four centuries with encouraging results. Even though additional analysis are needed to fully take advantage of the new development, important steps have been made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve the large-scale climate reconstructions with data assimilation.(SC - Sciences) -- UCL, 202

    Testing the performance of dendroclimatic process-based models at global scale with the PAGES2k tree-ring width database

    No full text
    International audienceTree-rings are one of the most commonly used proxies for reconstructing past climates at annual resolution. The climate information is generally deduced from tree-rings using statistical relationships, but the assumed linearity and stationarity may be inadequate. Process-based models allow for non-stationarity and non-linearity; however, many challenges are associated with their application for global scale reconstructions. In this study, we aim to test the feasibility of using the mechanistic model MAIDEN at the global scale for paleoclimate reconstructions based on data assimilation by applying it to the PAGES2k tree-ring width database. We also compare its performance with the simpler model VS-Lite, often used in global applications. Both models are skillful in terms of calibration and verification correlations for a similar number of sites (63 and 64 for VS-Lite and MAIDEN, respectively). VS-Lite tends to perform better for sites where the climate signal in tree-rings is strong and clear. By contrast, MAIDEN's performance is likely mostly limited by the lack of data (for example, daily Gross Primary Production data or phenological timings) needed to accurately calibrate the model. However, when the calibration is robust, both models reproduce well the observed link between climate and tree-growth. In general, VS-Lite tends to overestimate the climate signal in tree-rings compared to MAIDEN, which better reproduces the magnitude of the climate signal on average. Our results show that both models are complementary and can be applied at the global scale to reconstruct past climates using an adequate protocol designed to exploit existing tree-ring data

    Reconstructing atmospheric circulation and sea-ice extent in the West Antarctic over the past 200 years using data assimilation

    No full text
    The West Antarctic climate has witnessed large changes during the second half of the twentieth century including a strong and widespread continental warming, important regional changes in sea-ice extent and snow accumulation, as well as a major mass loss from the melting of some ice shelves. However, the potential links between those observed changes are still unclear and instrumental data do not allow determination of whether they are part of a long-term evolution or specific to the recent decades. In this study, we analyze the climate variability of the past two centuries in the West Antarctic sector by reconstructing the key atmospheric variables (atmospheric circulation, near-surface air temperature and snow accumulation) as well as the sea-ice extent at the annual timescale using a data assimilation approach. To this end, information from Antarctic ice core records (snow accumulation and δ18O) and tree-ring width records situated in the mid-latitudes of the Southern Hemisphere are combined with the physics of climate models using a data assimilation method. This ultimately provides a complete spatial reconstruction over the West Antarctic region. Our reconstruction reproduces well the main characteristics of the observed changes over the instrumental period. We show that the observed sea-ice reduction in the Bellingshausen-Amundsen Sea sector over the satellite era is part of a long-term trend, starting at around 1850 CE, while the sea-ice expansion in the Ross Sea sector has only started around 1950 CE. Furthermore, according to our reconstruction, the Amundsen Sea Low pressure (ASL) displays no significant linear trend in its strength or position over 1850–1950 CE but becomes stronger and shifts eastward afterwards. The year-to-year sea-ice variations in the Ross Sea sector are strongly related to the ASL variability over the past two centuries, including the recent trends. By contrast, the link between ASL and sea-ice in the Bellingshausen-Amundsen Sea sector changes with time, being stronger in recent decades than before. Our reconstruction also suggests that the continental response to the variability of the ASL may not be stationary over time, being significantly affected by modification of the mean atmospheric circulation. Finally, we show that the widespread warming since 1958 CE in West Antarctica is unusual in the context of past 200 years and is explained by both the deeper ASL and the positive phase of the Southern Annular Mode

    Using a process-based dendroclimatic proxy system model in a data assimilation framework: a test case in the Southern Hemisphere over the past centuries

    No full text
    International audienceTree-ring widths represent the most commonly used proxy to reconstruct the climate of the last millennium at high resolution, thanks to their large-scale availability. The approach often relies on a relationship between tree-ring width series and climate estimated on the basis of a linear regression. The underlying linearity and stationarity assumptions may be inadequate. Dendroclimatic process-based models, such as MAIDEN (Modeling and Analysis In DENdroecology), may be able to overcome some of the limitations of the statistical approach. MAIDEN is a mechanistic ecophysiological model that simulates tree-ring growth starting from surface air temperature, precipitation and CO2 concentration daily inputs. In this study, we successfully include the MAIDEN model into a data assimilation procedure as a proxy system model to robustly compare the outputs of an Earth system model with tree-ring width observations and provide a spatially-gridded reconstruction of continental temperature, precipitation and winds in the mid to high latitudes of the Southern Hemisphere over the past centuries. More specifically, we evaluate the benefits of using process-based tree-growth models such as MAIDEN for reconstructing past climate with data assimilation compared to the commonly used linear regression. The comparison of the reconstructions with instrumental data indicates an equivalent skill of both the regression- and process-based proxy system models in the data assimilation framework. Nevertheless, the MAIDEN model still brings important advantages that could result in more robust reconstructions beyond the instrumental era. Moreover, improvements continuously made in such models or in their calibration procedure also offer encouraging perspectives. Important steps have thus been made to demonstrate that using a process-based model like MAIDEN as a proxy system model is a promising way to improve the large-scale climate reconstructions with data assimilation

    Using a process-based dendroclimatic proxy system model in a data assimilation framework: a test case in the Southern Hemisphere over the past centuries

    No full text
    Currently available data-assimilation-based reconstructions of past climate variations have only used statistical proxy system models to make the link between climate model outputs and indirect observations from tree rings. However, the linearity and stationarity assumptions of the statistical approach may have limitations. In this study, we incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure using the reconstruction of near-surface air temperature, precipitation and winds in the midlatitudes of the Southern Hemisphere over the past 400 years as a test case. We compare our results with a data assimilation approach including a linear regression as a proxy system model for tree-ring width proxies. Overall, when compared to instrumental data, the reconstructions using MAIDEN as a proxy system model offer a skill equivalent to the experiment using the regression model. However, knowing the advantages that a process-based model can bring and the improvements that can still be made with MAIDEN, those results are promising

    Application and evaluation of the dendroclimatic process-based model MAIDEN during the last century in Canada and Europe

    No full text
    Tree-ring archives are one of the main sources of information to reconstruct climate variations over the last millennium with annual resolution. The links between tree-ring proxies and climate have usually been estimated using statistical approaches, assuming linear and stationary relationships. Both assumptions may be inadequate, but this issue can be overcome by ecophysiological modelling based on mechanistic understanding. In this respect, the model MAIDEN (Modeling and Analysis In DENdroecology) simulating tree-ring growth from daily temperature and precipitation, considering carbon assimilation and allocation in forest stands, may constitute a valuable tool. However, the lack of local meteorological data and the limited characterization of tree species traits can complicate the calibration and validation of such a complex model, which may hamper palaeoclimate applications. The goal of this study is to test the applicability of the MAIDEN model in a palaeoclimate context using as a test case tree-ring observations covering the 20th century from 21 Eastern Canadian taiga sites and 3 European sites. More specifically, we investigate the model sensitivity to parameter calibration and to the quality of climatic inputs, and we evaluate the model performance using a validation procedure. We also examine the added value of using MAIDEN in palaeoclimate applications compared to a simpler tree-growth model, i.e. VS-Lite. A Bayesian calibration of the most sensitive model parameters provides good results at most of the selected sites with high correlations between simulated and observed tree growth. Although MAIDEN is found to be sensitive to the quality of the climatic inputs, simple bias correction and downscaling techniques of these data improve significantly the performance of the model. The split-sample validation of MAIDEN gives encouraging results but requires long tree ring and meteorological series to give robust results. We also highlight a risk of overfitting in the calibration of model parameters that increases with short series. Finally, MAIDEN has shown higher calibration and validation correlations in most cases compared to VS-Lite. Nevertheless, this latter model turns out to be more stable over calibration and validation periods. Our results provide a protocol for the application of MAIDEN to potentially any site with tree-ring width data in the extratropical region
    corecore