962 research outputs found

    Quantum limitations on superluminal propagation

    Full text link
    Unstable systems such as media with inverted atomic population have been shown to allow the propagation of analytic wavepackets with group velocity faster than that of light, without violating causality. We illuminate the important role played by unstable modes in this propagation, and show that the quantum fluctuations of these modes, and their unitary time evolution, impose severe restrictions on the observation of superluminal phenomena.Comment: RevTeX 4 page

    Dynamics of Vortex Pair in Radial Flow

    Full text link
    The problem of vortex pair motion in two-dimensional plane radial flow is solved. Under certain conditions for flow parameters, the vortex pair can reverse its motion within a bounded region. The vortex-pair translational velocity decreases or increases after passing through the source/sink region, depending on whether the flow is diverging or converging, respectively. The rotational motion of two corotating vortexes in a quiescent environment transforms into motion along a logarithmic spiral in the presence of radial flow. The problem may have applications in astrophysics and geophysics.Comment: 13 pages, 9 figure

    Anomalous bond stretching phonons as a probe of charge fluctuations in perovskites

    Full text link
    Important information on momentum resolved low energy charge response can be extracted from anomalous properties of bond stretching in plane phonons observed in inelastic neutron and X-ray scattering in cuprates and some other perovskites. We discuss a semiphenomenological model based on coupling of phonons to a single charge mode. The phonon dispersion and linewidth allow to locate the energy of the charge excitation in the mid infrared part of the spectrum and to determine some of its characteristics. New experiments on oxygen isotope substitution could allow to achieve a more detailed description. Corresponding relations following from the model can be used for the interpretation of experiments and as test of the model.Comment: presented at the M2S-HTSC-VIII conference in Dresde

    Quantum coherence of discrete kink solitons in ion traps

    Full text link
    We propose to realize quantized discrete kinks with cold trapped ions. We show that long-lived solitonlike configurations are manifested as deformations of the zigzag structure in the linear Paul trap, and are topologically protected in a circular trap with an odd number of ions. We study the quantum-mechanical time evolution of a high-frequency, gap separated internal mode of a static kink and find long coherence times when the system is cooled to the Doppler limit. The spectral properties of the internal modes make them ideally suited for manipulation using current technology. This suggests that ion traps can be used to test quantum-mechanical effects with solitons and explore ideas for the utilization of the solitonic internal-modes as carriers of quantum information.Comment: 5 pages, 4 figures ; minor correction

    Entropy generation in 2+1-dimensional Gravity

    Full text link
    The tunneling approach, for entropy generation in quantum gravity, is shown to be valid when applied to 3-D general relativity. The entropy of de Sitter and Reissner-Nordstr\"om external event horizons and of the 3-D black hole obtained by Ba\~nados et. al. is rederived from tunneling of the metric to these spacetimes. The analysis for spacetimes with an external horizon is carried out in a complete analogy with the 4-D case. However, we find significant differences for the black hole. In particular the initial configuration that tunnels to a 3-D black hole may not to yield an infinitely degenerate object, as in 4-D Schwarzschild black hole. We discuss the possible relation to the evaporation of the 3-D black hole.Comment: 22 pages, Tex, TAUP-2102-9
    • …
    corecore