12 research outputs found

    Efficacy of Manual Ventilation Techniques During Cardiopulmonary Resuscitation in Dogs

    Get PDF
    The efficacy of ventilation of dogs during cardiopulmonary resuscitation (CPR) with a tight fitting face mask or mouth-to-nose rescue breathing has not been evaluated. Twenty-four purpose bred research dogs: Dogs were randomized to be ventilated by cuffed orotracheal tube, tight fitting face mask, mouth-to-nose breathing or compressions only during CPR (n = 6 in all groups). Orotracheal tube and face mask ventilation was performed on room air. Chest compressions were performed during the experimental procedure. Arterial blood gases were performed prior to euthanasia (baseline), at 3 min and at 6 min of CPR. PaO2 and PaCO2 were compared for each time point and each group. There was no difference in PaO2 or PaCO2 between groups at baseline. At 6 min all groups had a significantly higher PaCO2 (P ≤ 0.005) and the facemask and compression only groups had a significantly lower PaO2 (P < 0.02) when compared to the orotracheal tube group. There was no difference between the PaO2 of the mouth-to-nose group compared to the orotracheal tube group at 3 or 6 min. Gastric distension, regurgitation, gas leakage around the mouth, and ineffective breaths were all noted in both the face mask and mouth-to-nose group. The results of this study supports that orotracheal intubation is the preferred technique for ventilation during CPR in dogs. When orotracheal intubation is not possible, face mask ventilation or mouth-to-nose ventilation would be reasonable alternatives. When oxygen supplementation is available, face mask ventilation is likely to be superior. Appropriate training for both face mask and mouth-to-nose ventilation techniques is recommended

    Combined effects of dexmedetomidine and vatinoxan infusions on minimum alveolar concentration and cardiopulmonary function in sevoflurane-anesthetized dogs

    Get PDF
    Objective To evaluate the effects of combined infusions of vatinoxan and dexmedetomidine on inhalant anesthetic requirement and cardiopulmonary function in dogs. Study design Prospective experimental study. Methods A total of six Beagle dogs were anesthetized to determine sevoflurane minimum alveolar concentration (MAC) prior to and after an intravenous (IV) dose (loading, then continuous infusion) of dexmedetomidine (4.5 mu g kg(-1) hour(-1)) and after two IV doses of vatinoxan in sequence (90 and 180 mu g kg(-1) hour(-1)). Blood was collected for plasma dexmedetomidine and vatinoxan concentrations. During a separate anesthesia, cardiac output (CO) was measured under equivalent MAC conditions of sevoflurane and dexmedetomidine, and then with each added dose of vatinoxan. For each treatment, cardiovascular variables were measured with spontaneous and controlled ventilation. Repeated measures analyses were performed for each response variable; for all analyses, p 180 mu g kg(-1) hour(-1) might improve cardiovascular function further in combination with this dose of dexmedetomidine, but beneficial effects on anesthesia plane and recovery quality may be lost.Peer reviewe

    Assessment of microcirculation variables and endothelial glycocalyx using sidestream dark field videomicroscopy in anesthetized dogs undergoing cardiopulmonary bypass

    Get PDF
    IntroductionTo evaluate microcirculation and endothelial glycocalyx (eGC) variables using sidestream darkfield (SDF) videomicroscopy in canine cardiopulmonary bypass (CPB).MethodsDogs undergoing CPB for surgical correction of naturally-occurring cardiac disease were prospectively included. Variables collected included patient demographics, underlying cardiac disease, red blood cell flow (Flow), 4-25 μm vessel density (Density), absolute capillary blood volume (CBVabs), relative capillary blood volume (CBVrel) and eGC width assessed by perfused boundary region (PBR). Anesthetized healthy dogs were used as control. Microcirculation and eGC variables were compared at baseline under anesthesia (T0), on CPB prior to cross clamping (T1), after cross clamp removal following surgical correction (T2) and at surgical closure (T3).ResultsTwelve dogs were enrolled, including 10 with a complete dataset. Median Flow was 233.9, 79.9, 164.3, and 136.1 μm/s at T0, T1, T2, and T3, respectively, (p = 1.00). Median Density was 173.3, 118.4, 121.0 and 155.4 mm/mm2 at T0, T1, T2, and T3, respectively, (p = 1.00). Median CBVabs decreased over time: 7.4, 6.6, 4.8 and 4.7 103μm3 at T0, T1, T2, and T3, respectively, (p < 0.01). Median CBVrel increased over time: 1.1, 1.5,1.1, and 1.3 103μm3 at T0, T1, T2, and T3, respectively, (p < 0.001). Median PBR increased over time: 1.8, 2.1, 2.4, 2.1 μm at T0, T1, T2, and T3, respectively, (p < 0.001). Compared to control dogs (n = 8), CPB dogs had lower CBVabs at T0.ConclusionAlterations in eGC thickness and microvascular occur in dogs undergoing CPB for naturally-occurring cardiac disease

    The effects of ice-water storage on blood gas and acid-base measurements

    No full text
    Objective: To determine the effects of storage of arterial and venous blood samples in ice water on blood gas and acid-base measurements.Design: Prospective, in vitro, laboratory study.Setting: School of veterinary medicine.Subjects: Six healthy dogs.Measurements and main results: Baseline measurements of partial pressure of oxygen (PO2), partial pressure of carbon dioxide (PCO2), pH, hemoglobin concentration (tHb), oxyhemoglobin saturation, and oxygen content (ContO(2)) were made. Bicarbonate (HCO3) and standard base excess (SBE) were calculated. Arterial and venous blood samples were separated into 1 and 3 mL samples, anaerobically transferred into 3 mL plastic syringes, and stored in ice water for 6 hours. Measurements were repeated at 15, 30 minutes, and 1, 2, 4, and 6 hours after baseline measurements. Arterial (a) PO2 increased significantly from baseline after 30 minutes of storage in the 1 mL samples and after 2 hours in the 3 mL samples. Venous (v) PO2 was significantly increased from baseline after 4 hours in the 1 mL samples and after 6 hours in the 3 mL samples. The pHa significantly decreased after 2 hours of storage in the 1 mL samples and after 4 hours in the 3 mL samples. In both the 1 and 3 mL samples, pHv decreased significantly only after 6 hours. Neither the arterial nor the venous PCO2 values changed significantly in the 1 mL samples and increased only after 6 hours in the 3 mL samples. No significant changes in tHb, ContO(2), SBE, or HCO3 were detected.Conclusions: the PO2 of arterial and venous blood increased significantly when samples were stored in plastic syringes in ice water. These increases are attributable to the diffusion of oxygen from and through the plastic of the syringe into the blood, which occurred at a rate that exceeded metabolic consumption of oxygen by the nucleated cells

    Plasma concentrations and behavioral, antinociceptive, and physiologic effects of methadone after intravenous and oral transmucosal administration in cats

    No full text
    Objective-To determine plasma concentrations and behavioral, antinociceptive, and physiologic effects of methadone administered via IV and oral transmucosal (OTM) routes in cats.Animals-8 healthy adult cats.Procedures-Methadone was administered via IV (0.3 mg/kg) and OTM (0.6 mg/kg) routes to each cat in a balanced crossover design. on the days of drug administration, jugular catheters were placed in all cats under anesthesia; a cephalic catheter was also placed in cats that received methadone IV Baseline measurements were obtained >= 90 minutes after extubation, and methadone was administered via the predetermined route. Heart and respiratory rates were measured; sedation, behavior, and antinociception were evaluated, and blood samples were collected for methadone concentration analysis at predetermined intervals for 24 hours after methadone administration. Data were summarized and evaluated statistically.Results-Plasma concentrations of methadone were detected rapidly after administration via either route. Peak concentration was detected 2 hours after OTM administration and 10 minutes after IV administration. Mean +/- SD peak concentration was lower after OTM administration (81.2 +/- 14.5 ng/mL) than after IV administration (112.9 +/- 28.5 ng/mL). Sedation was greater and lasted longer after OTM administration. Antinociceptive effects were detected 10 minutes after administration in both groups; these persisted 2 hours after IV administration and 4 hours after OTM administration.Conclusions and Clinical Relevance-Despite lower mean peak plasma concentrations, duration of antinociceptive effects of methadone was longer after OTM administration than after IV administration. Methadone administered via either route may be useful for perioperative pain management in cats. (Am J Vet Res 2011;72:764-771)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Hemodynamic effects of butorphanol in desflurane-anesthetized dogs

    No full text
    Objective To evaluate the effects of butorphanol on cardiopulmonary parameters in dogs anesthetized with desflurane and breathing spontaneously.Study design Prospective, randomized experimental trial.Animals Twenty dogs weighing 12 +/- 3 kg.Methods Animals were distributed into two groups: a control group (CG) and butorphanol group (BG). Propofol was used for induction and anesthesia was maintained with desflurane (10%). Forty minutes after induction, the dogs in the CG received sodium chloride 0.9% (0.05 mL kg(-1) IM), and dogs in the BG received butorphanol (0.4 mg kg(-1) IM). The first measurements of body temperature (BT), heart rate (HR), arterial pressures (AP), cardiac output (CO), cardiac index (CI), central venous pressure (CVP), stroke volume index (SVI), pulmonary arterial occlusion pressure (PAOP), mean pulmonary arterial pressure (mPAP), left ventricular stroke work (LVSW), systemic (SVR) and pulmonary (PVR) vascular resistances, respiratory rate (fR), and arterial oxygen (PaO(2)) and carbon dioxide (PaCO(2)) partial pressures were taken immediately before the administration of butorphanol or sodium chloride solution (T0) and then at 15-minute intervals (T15-T75).Results In the BG, HR, AP, mPAP and SVR decreased significantly from T15 to T75 compared to baseline. fR was lower at T30 than at T0 in the BG. AP and fR were significantly lower than in the CG from T15 to T75. PVR was lower in the BG than in the CG at T30, while PaCO(2) was higher compared with T0 from T30 to T75 in the BG and significantly higher than in the CG at T30 to T75.Conclusions and clinical relevance At the studied dose, butorphanol caused hypotension and decreased ventilation during desflurane anesthesia in dogs. The hypotension (from 86 +/- 10 to 64 +/- 10 mmHg) is clinically relevant, despite the maintenance of cardiac index
    corecore