11 research outputs found

    Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized Serosal Cuticle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito <it>Aedes aegypti</it>, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing.</p> <p>Results</p> <p>We observed an abrupt acquisition of desiccation resistance during <it>Ae. aegypti </it>embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The <it>Ae. aegypti </it>Chitin Synthase A gene (<it>AaCHS1</it>) possesses two alternatively spliced variants, <it>AaCHS1a </it>and <it>AaCHS1b</it>, differentially expressed during <it>Ae. aegypti </it>embryonic development. It was verified that at the moment of serosal cuticle formation, <it>AaCHS1a </it>is the sole variant specifically expressed.</p> <p>Conclusion</p> <p>In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of <it>Ae. aegypti </it>eggs. <it>AaCHS1a </it>expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the <it>Ae. aegypti </it>life cycle.</p

    Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mosquito <it>A. aegypti </it>is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of <it>A. aegypty </it>life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during <it>A. aegypti </it>embryogenesis are unknown.</p> <p>Results</p> <p>Glucose metabolism was investigated throughout <it>Aedes aegypti </it>(Diptera) embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE) and germ band retraction (GBr, 24 HAE) may be considered landmarks regarding glucose 6-phosphate (G6P) destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH) activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP), of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK) activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK) and pyruvate kinase (PK) activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3) activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis.</p> <p>Conclusions</p> <p>The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose metabolism during <it>Aedes aegypti </it>embryogenesis. Furthermore, the results also suggest a role for GSK3 in glycogen balance/distribution during morphological modifications.</p

    Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures

    No full text
    Despite its vector importance little attention is given to Aedes aegypti embryonic development. In this study, temperature influence on time course of Ae. aegypti larvae hatching and egg viability were evaluated. The dormancy state at the end of embryogenesis could be interrupted with a proper stimulus. Temperatures tested ranged between 12-36°C; the maximum temperature limit is 35°C and the minimum one is below 12°C. Egg viability between 16-31°C was above 80%. The definition of physiological embryonic parameters at this temperature range corroborates Ae. aegypti presence on tropical and subtropical world regions

    Increase in egg resistance to desiccation in springtails correlates with blastodermal cuticle formation : eco-evolutionary implications for insect terrestrialization.

    Get PDF
    Land colonization was a major event in the history of life. Among animals, insects exerted a staggering terrestrialization success, due to traits usually associated with postembryonic life stages, while the egg stage has been largely overlooked in comparative studies. In many insects, after blastoderm differentiation, the extraembryonic serosal tissue wraps the embryo and synthesizes the serosal cuticle, an extracellular matrix that lies beneath the eggshell and protects the egg against water loss. In contrast, in noninsect hexapods such as springtails (Collembola) the early blastodermal cells synthesize a blastodermal cuticle. Here, we investigate the relationship between blastodermal cuticle formation and egg resistance to desiccation in the springtails Orchesella cincta and Folsomia candida, two species with different oviposition environments and developmental rates. The blastodermal cuticle becomes externally visible in O. cincta and F. candida at 22% and 29% of embryogenesis, respectively. To contextualize, we describe the stages of springtail embryogenesis, exemplified by F. candida. Our physiological assays then showed that blastodermal cuticle formation coincides with an increase in egg viability in a dry environment, significantly contributing to hatching success. However, protection differs between species: while O. cincta eggs survive at least 2 hr outside a humid environment, the survival period recorded for F. candida eggs is only 15 min, which correlates with this species' requirement for humid microhabitats. We suggest that the formation of this cuticle protects the eggs, constituting an ancestral trait among hexapods that predated and facilitated the process of terrestrialization that occurred during insect evolution. [Abstract copyright: © 2020 Wiley Periodicals LLC.

    Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus

    No full text
    Made available in DSpace on 2015-05-04T17:07:28Z (GMT). No. of bitstreams: 2 license.txt: 1914 bytes, checksum: 7d48279ffeed55da8dfe2f8e81f3b81f (MD5) helena_vargasetal_IOC_2014.pdf: 1115334 bytes, checksum: 9b19b352aff2496205bcf88ae2739847 (MD5) Previous issue date: 2014Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Fisiologia e Controle de Artrópodes Vetores. Rio de Janeiro, RJ, Brasil / Instituto de Biologia do Exército. Laboratório de Entomologia. Rio de Janeiro, RJ, Brasil / Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de Biociências e Biotecnologia. Laboratório de Química e Função de Proteínas e Peptídeos. Campos dos Goytacases, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Fisiologia e Controle de Artrópodes Vetores. Laboratório de Biologia Molecular de Flavivírus. Rio de Janeiro, RJ, Brasil / Instituto de Biologia do Exército. Laboratório de Entomologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Fisiologia e Controle de Artrópodes Vetores. Rio de Janeiro, RJ, Brasil / Instituto de Biologia do Exército. Laboratório de Entomologia. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular de Flavivírus. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de Biociências e Biotecnologia. Laboratório de Química e Função de Proteínas e Peptídeos. Campos dos Goytacases, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Given their medical importance, mosquitoes have been studied as vectors of parasites since the late 1800’s. However, there are still many gaps concerning some aspects of their biology, such as embryogenesis. The embryonic desiccation resistance (EDR), already described in Aedes and Anopheles gambiae mosquitoes, is a peculiar trait. Freshly laid eggs are susceptible to water loss, a condition that can impair their viability. EDR is acquired during embryogenesis through the formation of the serosal cuticle (SC), protecting eggs from desiccation. Nevertheless, conservation of both traits (SC presence and EDR acquisition) throughout mosquito evolution is unknown. Comparative physiological studies with mosquito embryos from different genera, exhibiting distinct evolutionary histories and habits is a feasible approach. In this sense, the process of EDR acquisition of Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus at 25 C was evaluated. Completion of embryogenesis occurs in Ae. aegypti, An. aquasalis and Cx. quinquefasciatus at, respectively 77.4, 51.3 and 34.3 hours after egg laying, Cx. quinquefasciatus embryonic development taking less than half the time of Ae. aegypti. In all cases, EDR is acquired in correlation with SC formation. For both Ae. aegypti and An. aquasalis, EDR and SC appear at 21% of total embryonic development, corresponding to the morphological stage of complete germ band elongation/beginning of germ band retraction. Although phylogenetically closer to Ae. aegypti than to An. aquasalis, Cx. quinquefasciatus acquires both EDR and serosal cuticle later, with 35% of total development, when the embryo already progresses to the middle of germ band retraction. EDR confers distinct egg viability in these species. While Ae. aegypti eggs demonstrated high viability when left up to 72 hours in a dry environment, those of An. aquasalis and Cx. quinquefasciatus supported these conditions for only 24 and 5 hours, respectively. Our data suggest that serosa development is at least partially uncoupled from embryo development and that, depending upon the mosquito species, EDR bestows distinct levels of egg viability

    Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation

    Get PDF
    Submitted by sandra infurna ([email protected]) on 2016-04-28T17:24:16Z No. of bitstreams: 1 laura_farnesi_etal_IOC_2015.pdf: 1801229 bytes, checksum: 0e5e68098ccc098cd106a0cc133754a2 (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-04-28T17:38:41Z (GMT) No. of bitstreams: 1 laura_farnesi_etal_IOC_2015.pdf: 1801229 bytes, checksum: 0e5e68098ccc098cd106a0cc133754a2 (MD5)Made available in DSpace on 2016-04-28T17:38:41Z (GMT). No. of bitstreams: 1 laura_farnesi_etal_IOC_2015.pdf: 1801229 bytes, checksum: 0e5e68098ccc098cd106a0cc133754a2 (MD5) Previous issue date: 2015Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Bilogia Molecular de Insetos. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Fisiologia e Controle de Artrópodes Vetores. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Celular. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Fisiologia e Controle de Artrópodes Vetores. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular de Flavivírus. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de Biociências e Biotecnologia. Laboratório de Química e Função de Proteínas e Peptídeos. Campos de Goytacazes, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Mosquito eggs are laid in water but freshly laid eggs are susceptible to dehydration, if their surroundings dry out at the first hours of development. During embryogenesis of different mosquito vectors the serosal cuticle, an extracellular matrix, is produced; it wraps the whole embryo and becomes part of the eggshell. This cuticle is an essential component of the egg resistance to desiccation (ERD). However, ERD is variable among species, sustaining egg viability for different periods of time. While Aedes aegypti eggs can survive for months in a dry environment (high ERD), those of Anopheles aquasalis and Culex quinquefasciatus in the same condition last, respectively, for one day (medium ERD) or a few hours (low ERD). Resistance to desiccation is determined by the rate of water loss, dehydration tolerance and total amount of water of a given organism. The ERD variability observed among mosquitoes probably derives from diverse traits. We quantified several attributes of whole eggs, potentially correlated with the rate of water loss: length, width, area, volume, area/volume ratio and weight. In addition, some eggshell aspects were also evaluated, such as absolute and relative weight, weight/area relationship (herein called surface density) and chitin content. Presence of chitin specifically in the serosal cuticle as well as aspects of endochorion external surface were also investigated. Three features could be related to differences on ERD levels: chitin content, directly related to ERD, the increase in the egg volume during embryogenesis and the eggshell surface density, which were both inversely related to ERD. Although data suggest that the amount of chitin in the eggshell is relevant for egg impermeability, the participation of other yet unidentified eggshell attributes must be considered in order to account for the differences in the ERD levels observed among Ae. aegypti, An. aquasalis and Cx. quinquefasciatus
    corecore