9 research outputs found

    An adaptive behavioral-based incremental batch learning malware variants detection model using concept drift detection and sequential deep learning

    Get PDF
    Malware variants are the major emerging threats that face cybersecurity due to the potential damage to computer systems. Many solutions have been proposed for detecting malware variants. However, accurate detection is challenging due to the constantly evolving nature of the malware variants that cause concept drift. Existing malware detection solutions assume that the mapping learned from historical malware features will be valid for new and future malware. The relationship between input features and the class label has been considered stationary, which doesn't hold for the ever-evolving nature of malware variants. Malware features change dynamically due to code obfuscations, mutations, and the modification made by malware authors to change the features' distribution and thus evade the detection rendering the detection model obsolete and ineffective. This study presents an Adaptive behavioral-based Incremental Batch Learning Malware Variants Detection model using concept drift detection and sequential deep learning (AIBL-MVD) to accommodate the new malware variants. Malware behaviors were extracted using dynamic analysis by running the malware files in a sandbox environment and collecting their Application Programming Interface (API) traces. According to the malware first-time appearance, the malware samples were sorted to capture the malware variants' change characteristics. The base classifier was then trained based on a subset of historical malware samples using a sequential deep learning model. The new malware samples were mixed with a subset of old data and gradually introduced to the learning model in an adaptive batch size incremental learning manner to address the catastrophic forgetting dilemma of incremental learning. The statistical process control technique has been used to detect the concept drift as an indication for incrementally updating the model as well as reducing the frequency of model updates. Results from extensive experiments show that the proposed model is superior in terms of detection rate and efficiency compared with the static model, periodic retraining approaches, and the fixed batch size incremental learning approach. The model maintains an average of 99.41% detection accuracy of new and variants malware with a low updating frequency of 1.35 times per month

    A new comprehensive approach for regional drought monitoring

    No full text
    The Standardized Precipitation Index (SPI) is a vital component of meteorological drought. Several researchers have been using SPI in their studies to develop new methodologies for drought assessment, monitoring, and forecasting. However, it is challenging for SPI to provide quick and comprehensive information about precipitation deficits and drought probability in a homogenous environment. This study proposes a Regional Intensive Continuous Drought Probability Monitoring System (RICDPMS) for obtaining quick and comprehensive information regarding the drought probability and the temporal evolution of the droughts at the regional level. The RICDPMS is based on Monte Carlo Feature Selection (MCFS), steady-state probabilities, and copulas functions. The MCFS is used for selecting more important stations for the analysis. The main purpose of employing MCFS in certain stations is to minimize the time and resources. The use of MCSF makes RICDPMS efficient for drought monitoring in the selected region. Further, the steady-state probabilities are used to calculate regional precipitation thresholds for selected drought intensities, and bivariate copulas are used for modeling complicated dependence structures as persisting between precipitation at varying time intervals. The RICDPMS is validated on the data collected from six meteorological locations (stations) of the northern area of Pakistan. It is observed that the RICDPMS can monitor the regional drought and provide a better quantitative way to analyze deficits with varying drought intensities in the region. Further, the RICDPMS may be used for drought monitoring and mitigation policies

    Identifying inter-seasonal drought characteristics using binary outcome panel data models

    No full text
    This study mainly focuses on spatiotemporal and inter-seasonal meteorological drought characteristics. Random Effect Logistic Regression Model (RELRM) and Conditional Fixed Effect Logistic Regression Model (CFELRM) are used to identify the spatiotemporal and inter-seasonal characteristics of meteorological drought in selected stations. The log-likelihood Ratio Chi-Square (LRCST) and Wald chi-square tests (WCTs) are used to assess the significance of RELRM and CFELRM. The Hausman test (HT) is applied to select the appropriate model between RELRM and CFELRM. For instance, HT suggests the CFELRM as an appropriate model in spring-to-summer spatiotemporal drought modelling. The significant coefficient from CFELRM indicates that an increment in moisture conditions of the spring season will decrease the probability of drought in the summer. The odds ratio of 0.1942 means that 19.42% chance of being in a higher category. Similarly, in summer-to-autumn using RELRM the computed odds ratio of 0.0673 shows that 6.73% chance of being in a higher category

    Forecasting Day-Ahead Traffic Flow Using Functional Time Series Approach

    No full text
    Nowadays, short-term traffic flow forecasting has gained increasing attention from researchers due to traffic congestion in many large and medium-sized cities that pose a serious threat to sustainable urban development. To this end, this research examines the forecasting performance of functional time series modeling to forecast traffic flow in the ultra-short term. An appealing feature of the functional approach is that unlike other methods, it provides information over the whole day, and thus, forecasts can be obtained for any time within a day. Within this approach, a Functional AutoRegressive (FAR) model is used to forecast the next-day traffic flow. For empirical analysis, the traffic flow data of Dublin airport link road, Ireland, collected at a fifteen-minute interval from 1 January 2016 to 30 April 2017, are used. The first twelve months are used for model estimation, while the remaining four months are for the one-day-ahead out-of-sample forecast. For comparison purposes, a widely used model, namely AutoRegressive Integrated Moving Average (ARIMA), is also used to obtain the forecasts. Finally, the models’ performances are compared based on different accuracy statistics. The study results suggested that the functional time series model outperforms the traditional time series models. As the proposed method can produce traffic flow forecasts for the entire next day with satisfactory results, it can be used in decision making by transportation policymakers and city planners

    Proposing a new framework for analyzing the severity of meteorological drought

    No full text
    The quantitative description of meteorological drought from various geographical locations and indicators is crucial for early drought warning to avoid its negative impacts. Therefore, the current study proposes a new framework to comprehensively accumulate spatial and temporal information for meteorological drought from various stations and drought indicators (indices). The proposed framework is based on two major components such as the Monthly-based Monte Carlo Feature Selection (MMCFS,) and Monthly-based Joint Index Weights (MJIW). Besides, three commonly used SDI are jointly assessed to quantify drought for selected geographical locations. Moreover, the current study uses the monthly data from six meteorological stations in the northern region for 47 years (1971-2017) for calculating SDI values. The outcomes of the current research explicitly accumulate regional spatiotemporal information for meteorological drought. In addition, results may serve as an early warning to the effective management of water resources to avoid negative drought impacts in Pakistan

    Forecasting Day-Ahead Traffic Flow Using Functional Time Series Approach

    No full text
    Nowadays, short-term traffic flow forecasting has gained increasing attention from researchers due to traffic congestion in many large and medium-sized cities that pose a serious threat to sustainable urban development. To this end, this research examines the forecasting performance of functional time series modeling to forecast traffic flow in the ultra-short term. An appealing feature of the functional approach is that unlike other methods, it provides information over the whole day, and thus, forecasts can be obtained for any time within a day. Within this approach, a Functional AutoRegressive (FAR) model is used to forecast the next-day traffic flow. For empirical analysis, the traffic flow data of Dublin airport link road, Ireland, collected at a fifteen-minute interval from 1 January 2016 to 30 April 2017, are used. The first twelve months are used for model estimation, while the remaining four months are for the one-day-ahead out-of-sample forecast. For comparison purposes, a widely used model, namely AutoRegressive Integrated Moving Average (ARIMA), is also used to obtain the forecasts. Finally, the models’ performances are compared based on different accuracy statistics. The study results suggested that the functional time series model outperforms the traditional time series models. As the proposed method can produce traffic flow forecasts for the entire next day with satisfactory results, it can be used in decision making by transportation policymakers and city planners

    A generalized framework for quantifying and monitoring the severity of meteorological drought

    No full text
    The current study proposes a new framework for quantifying and monitoring the severity of meteorological drought. The proposed framework consists of three phases. The first phase of the framework uses K-component Gaussian Mixture Distribution (GMD) in the computation. The second phase is mainly based on the dissimilarity matrix-based clustering using C-index and Monte Carlo Feature-based Selection (MCFS) method. The third phase uses the Markov chain, transition probabilities and a non-homogeneous Poisson process under the Bayesian estimation. The Relative Importance (RI) values are used to choose appropriate stations. The Deviance Information Criteria (DIC) is used to check model suitability, and Root Mean Square Error (RMSE) is utilized for determining model performance. The proposed framework is validated to the 52 meteorological stations in Pakistan for 49 years from 1968 to 2016. Moreover, the outcomes of the current analysis provide insight to quantify and monitor meteorological drought comprehensively and accurately

    Modified Standardized Precipitation Evapotranspiration Index: spatiotemporal analysis of drought

    No full text
    Drought monitoring is a complicated issue as it requires multiple meteorological variables to monitor and anticipate drought accurately. Therefore, developing a method that enables researchers, data scientists, and planners to comprehend drought mitigation policies more accurately is essential. In this research, based on the concepts behind the calculation of the Standardized Precipitation Evapotranspiration Index (SPEI), a new drought index is proposed for regional drought monitoring: the Modified Standardized Precipitation Evapotranspiration Index (MSPEI). The potential of the proposed index is based on the estimation of Reference Evapotranspiration (ETo). Therefore, the Modified Hargreaves-Samani (MHS) equation based on fuzzy logic calibration is used to estimate ETo. The proposed index is validated on ten meteorological stations in Pakistan at a one-month time scale. Afterward, based on the Pearson correlation, the performance of the proposed index is compared with the commonly used drought index (SPEI). Results showed a significant correlation (r &gt; 0.7) between the quantitative values of MSPEI and SPEI for all ten stations. Moreover, a modified Tjostheims coefficient is used to estimate and test the spatial correlation between SPEI and MSPEI for different drought classes. According to our findings, the association between the SW, ND, ED, EW, MW, and SD patterns of MSPEI and SPI is 0.74, 0.834, 0.673, 0.592, 0.393, and 0.434, respectively. Meanwhile, considering the significance of future drought trend detection, this research is further extended to detect the future trend of MSPEI by using the Hurst index. In accordance with the results, Bahawalnagar, Sialkot, Lahore, Kotli, and Gilgit all have HI values greater than 0.5 (0.63, 0.58, 0.56, 0.55, and 0.53, respectively). In contrast, Muzaffarabad, Skardu, and Jhelum have HI values 0.47, 0.45 and 0.38, respectively; however, HI values of 0.5 are observed at Dera Ismail Khan (DIK) and Islamabad. Therefore, this research provides a basis for developing and enhancing drought hazard characterization, encouraging researchers and policymakers to monitor and forecast regional droughts using a more accurate drought index.Validerad;2023;Nivå 2;2023-04-21 (joosat);Funder: King Khalid University (RGP.2/23/44);Prince Sattam bin Abdulaziz University (PSAU/2023/R/1444)Licens fulltext: CC BY License</p

    Bayesian logistic regression analysis for spatial patterns of inter-seasonal drought persistence

    No full text
    Drought is one of the disastrous natural hazards with complex seasonal and spatial patterns. Understanding the spatial patterns of drought and predicting the likelihood of inter-seasonal drought persistence can provide substantial operational guidelines for water resource management and agricultural production. This study examines drought persistence by identifying the spatial patterns of seasonal drought frequency and inter-seasonal drought persistence in the northeastern region of Pakistan. The Standardized Precipitation Index (SPI) with a three-month time scale is used to examine meteorological drought. Furthermore, Bayesian logistic regression is used to calculate the probability and odds ratios of drought occurrence in the current season, given the previous season’s SPI values. For instance, at Balakot station, for the summer-to-autumn season, the value of the odds ratio is significant (6.78). It shows that one unit increase in SPI of the summer season will cause a 5.78 times to increase in odds of autumn drought occurrence. The average drought frequency varies from 37.3 to 89.1%, whereas the average inter-seasonal drought persistence varies from 21.9 to 91.7% in the study region. Results indicate that some areas in the study region, like Kakul and Garhi Dupatta, are more prone to drought and vulnerable to inter-seasonal drought persistence. Furthermore, the Bayesian logistic regression results reveal a negative relationship between spring drought occurrence and winter SPI, demonstrating that the overall study region is more prone to winter-to-spring drought persistence and less vulnerable to summer-to-autumn drought persistence. Overall study has concluded that the region’s seasonal drought forecast is challenging due to uncertain drought persistence patterns. However, the Bayesian logistic regression model provides more accurate and precise regional seasonal drought forecasts. The outcome of the present study provides scientific evidence to develop early warning systems and manage seasonal crops in Pakistan
    corecore