121 research outputs found

    Correlations in quantum thermodynamics: Heat, work, and entropy production

    Get PDF
    We provide a characterization of energy in the form of exchanged heat and work between two interacting constituents of a closed, bipartite, correlated quantum system. By defining a binding energy we derive a consistent quantum formulation of the first law of thermodynamics, in which the role of correlations becomes evident, and this formulation reduces to the standard classical picture in relevant systems. We next discuss the emergence of the second law of thermodynamics under certain---but fairly general---conditions such as the Markovian assumption. We illustrate the role of correlations and interactions in thermodynamics through two examples.Comment: 16 page

    Zeno effect for quantum computation and control

    Full text link
    It is well known that the quantum Zeno effect can protect specific quantum states from decoherence by using projective measurements. Here we combine the theory of weak measurements with stabilizer quantum error correction and detection codes. We derive rigorous performance bounds which demonstrate that the Zeno effect can be used to protect appropriately encoded arbitrary states to arbitrary accuracy, while at the same time allowing for universal quantum computation or quantum control.Comment: Significant modifications, including a new author. To appear in PR

    Quantum discord and non-Markovianity of quantum dynamics

    Full text link
    The problem of recognizing (non-)Markovianity of a quantum dynamics is revisited through analyzing quantum correlations. We argue that instantaneously-vanishing quantum discord provides a necessary and sufficient condition for Markovianity of a quantum map. This is used to introduce a measure of non-Markovianity. This measure, however, requires demanding knowledge about the system and the environment. By using a quantum correlation monogamy property and an ancillary system, we propose a simplified measure with less requirements. Non-Markovianity is thereby decided by quantum state tomography of the system and the ancilla.Comment: 5 pages, 3 figure

    The Solid Phase Extraction of Some Metal Ions Using Palladium Nanoparticles Attached to Silica Gel Chemically Bonded by Silica-Bonded N-Propylmorpholine as New Sorbent prior to Their Determination by Flame Atomic Absorption Spectroscopy

    Get PDF
    In this research at first palladium nanoparticle attached to a new chemically bonded silica gel has been synthesized and has been characterized with different techniques such as X-ray diffraction (XRD), fourier transform infrared (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Then, this new sorbent (chemically modified silica gel with N-propylmorpholine (PNP-SBNPM)) was efficiently used for preconcentration of some metal ions in various food samples. The influence of effective variables including mass of sorbent, flow rate, pH of sample solutions and condition of eluent such as volume, type and concentration on the recoveries of understudy metal ions were investigated. Following the optimization of variables, the interfering effects of some foreign ions on the preconcentration and determination of the investigated metal ions described. At optimum values of variables, all investigated metal ions were efficiently recovered with efficiency more than 95%, relative standard deviation (RSD) between 2.4 and 2.8, and detection limit in the range of 1.4–2.7 ng mL−1. The present method is simple and rapidly applicable for the determination of the understudied metal ions (ng mL−1) in different natural food samples
    corecore