54 research outputs found
Recommended from our members
Motor phenotype of LRRK2 G2019S carriers in early-onset Parkinson disease
Objective: To determine the motor phenotype of LRRK2 G2019S mutation carriers. LRRK2 mutation carriers were previously reported to manifest the tremor dominant motor phenotype, which has been associated with slower motor progression and less cognitive impairment compared with the postural instability and gait difficulty (PIGD) phenotype. Design: Cross-sectional observational study. Setting: Thirteen movement disorders centers. Participants: Nine hundred twenty-five early-onset Parkinson disease cases defined as age at onset younger than 51 years. Main Outcome Measures: LRRK2 mutation status and Parkinson disease motor phenotype: tremor dominant or PIGD. Demographic information, family history of Parkinson disease, and the Unified Parkinson's Disease Rating Scale score were collected on all participants. DNA samples were genotyped for LRRK2 mutations (G2019S, I2020T, R1441C, and Y1699C). Logistic regression was used to examine associations of G2019S mutation status with motor phenotype adjusting for disease duration, Ashkenazi Jewish ancestry, levodopa dose, and family history of Parkinson disease. Results: Thirty-four cases (3.7%) (14 previously reported) were G2019S carriers. No other mutations were found. Carriers were more likely to be Ashkenazi Jewish (55.9% vs 11.9%; P < .001) but did not significantly differ in any other demographic or disease characteristics. Carriers had a lower tremor score (P = .03) and were more likely to have a PIGD phenotype (92.3% vs 58.9%; P = .003). The association of the G2019S mutation with PIGD phenotype remained after controlling for disease duration and Ashkenazi Jewish ancestry (odds ratio, 17.7; P < .001). Conclusion: Early-onset Parkinson disease G2019S LRRK2 carriers are more likely to manifest the PIGD phenotype, which may have implications for disease course
The Alvarado score for predicting acute appendicitis: a systematic review
Background: The Alvarado score can be used to stratify patients with symptoms of suspected appendicitis; the validity of the score in certain patient groups and at different cut points is still unclear. The aim of this study was to assess the discrimination (diagnostic accuracy) and calibration performance of the Alvarado score. Methods: A systematic search of validation studies in Medline, Embase, DARE and The Cochrane library was performed up to April 2011. We assessed the diagnostic accuracy of the score at the two cut-off points: score of 5 (1 to 4 vs. 5 to 10) and score of 7 (1 to 6 vs. 7 to 10). Calibration was analysed across low (1 to 4), intermediate (5 to 6) and high (7 to 10) risk strata. The analysis focused on three sub-groups: men, women and children. Results: Forty-two studies were included in the review. In terms of diagnostic accuracy, the cut-point of 5 was good at 'ruling out' admission for appendicitis (sensitivity 99% overall, 96% men, 99% woman, 99% children). At the cut-point of 7, recommended for 'ruling in' appendicitis and progression to surgery, the score performed poorly in each subgroup (specificity overall 81%, men 57%, woman 73%, children 76%). The Alvarado score is well calibrated in men across all risk strata (low RR 1.06, 95% CI 0.87 to 1.28; intermediate 1.09, 0.86 to 1.37 and high 1.02, 0.97 to 1.08). The score over-predicts the probability of appendicitis in children in the intermediate and high risk groups and in women across all risk strata. Conclusions: The Alvarado score is a useful diagnostic 'rule out' score at a cut point of 5 for all patient groups. The score is well calibrated in men, inconsistent in children and over-predicts the probability of appendicitis in women across all strata of risk
Networks of Neuronal Genes Affected by Common and Rare Variants in Autism Spectrum Disorders
Autism spectrum disorders (ASD) are neurodevelopmental disorders with phenotypic and genetic heterogeneity. Recent studies have reported rare and de novo mutations in ASD, but the allelic architecture of ASD remains unclear. To assess the role of common and rare variations in ASD, we constructed a gene co-expression network based on a widespread survey of gene expression in the human brain. We identified modules associated with specific cell types and processes. By integrating known rare mutations and the results of an ASD genome-wide association study (GWAS), we identified two neuronal modules that are perturbed by both rare and common variations. These modules contain highly connected genes that are involved in synaptic and neuronal plasticity and that are expressed in areas associated with learning and memory and sensory perception. The enrichment of common risk variants was replicated in two additional samples which include both simplex and multiplex families. An analysis of the combined contribution of common variants in the neuronal modules revealed a polygenic component to the risk of ASD. The results of this study point toward contribution of minor and major perturbations in the two sub-networks of neuronal genes to ASD risk
- …