490 research outputs found

    A skyrmion-based spin-torque nano-oscillator

    Full text link
    A model for a spin-torque nano-oscillator based on the self-sustained oscillation of a magnetic skyrmion is presented. The system involves a circular nanopillar geometry comprising an ultrathin film free magnetic layer with a strong Dzyaloshinkii-Moriya interaction and a polariser layer with a vortex-like spin configuration. It is shown that spin-transfer torques due to current flow perpendicular to the film plane leads to skyrmion gyration that arises from a competition between geometric confinement due to boundary edges and the vortex-like polarisation of the spin torques. A phenomenology for such oscillations is developed and quantitative analysis using micromagnetics simulations is presented. It is also shown that weak disorder due to random anisotropy variations does not influence the main characteristics of the steady-state gyration.Comment: 15 pages, 6 figure

    Electric field effect modulation of transition temperature, mobile carrier density and in-plane penetration depth in NdBa2Cu3O(7-delta) thin films

    Full text link
    We explore the relationship between the critical temperature, T_c, the mobile areal carrier density, n_2D, and the zero temperature magnetic in-plane penetration depth, lambda_ab(0), in very thin underdoped NdBa2Cu3O{7-delta} films near the superconductor to insulator transition using the electric field effect technique. We observe that T_c depends linearly on both, n_2D and lambda_ab(0), the signature of a quantum superconductor to insulator (QSI) transition in two dimensions with znu-bar where z is the dynamic and nu-bar the critical exponent of the in-plane correlation length.Comment: 4 pages, 4 figure

    Advances in the Physics of Magnetic Skyrmions and Perspective for Technology

    Full text link
    Magnetic skyrmions are small swirling topological defects in the magnetization texture stabilized by the protection due to their topology. In most cases they are induced by chiral interactions between atomic spins existing in non-centrosymmetric magnetic compounds or in thin films in which inversion symmetry is broken by the presence of an interface. The skyrmions can be extremely small with diameters in the nanometer range and, importantly, they behave as particles that can be moved, created or annihilated, making them suitable for abacus-type applications in information storage, logic or neuro-inspired technologies. Up to the last years skyrmions were observed only at low temperature (and in most cases under large applied fields) but important efforts of research has been recently devoted to find thin film and multilayered structures in which skyrmions are stabilized above room temperature and manipulated by current. This article focuses on these recent advances on the route to devices prototypes.Comment: Published online 13 June 2017 : 17 pages, 8 figures and 2 boxe

    Electrical signature of individual magnetic skyrmions in multilayered systems

    Full text link
    Magnetic skyrmions are topologically protected whirling spin textures that can be stabilized in magnetic materials in which a chiral interaction is present. Their limited size together with their robustness against the external perturbations promote them as the ultimate magnetic storage bit in a novel generation of memory and logic devices. Despite many examples of the signature of magnetic skyrmions in the electrical signal, only low temperature measurements, mainly in magnetic materials with B20 crystal structure, have demonstrated the skyrmions contribution to the electrical transport properties. Using the combination of Magnetic Force Microscopy (MFM) and Hall resistivity measurements, we demonstrate the electrical detection of sub-100 nm skyrmions in multilayered thin film at room temperature (RT). We furthermore analyse the room temperature Hall signal of a single skyrmion which contribution is mainly dominated by anomalous Hall effect.Comment: 13 pages, 4 figure

    Tunable Rashba spin-orbit interaction at oxide interfaces

    Full text link
    The quasi-two-dimensional electron gas found at the LaAlO3/SrTiO3 interface offers exciting new functionalities, such as tunable superconductivity, and has been proposed as a new nanoelectronics fabrication platform. Here we lay out a new example of an electronic property arising from the interfacial breaking of inversion symmetry, namely a large Rashba spin-orbit interaction, whose magnitude can be modulated by the application of an external electric field. By means of magnetotransport experiments we explore the evolution of the spin-orbit coupling across the phase diagram of the system. We uncover a steep rise in Rashba interaction occurring around the doping level where a quantum critical point separates the insulating and superconducting ground states of the system

    Hybrid chiral domain walls and skyrmions in magnetic multilayers

    Full text link
    Noncollinear spin textures in ferromagnetic ultrathin films are currently the subject of renewed interest since the discovery of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This antisymmetric exchange interaction selects a given chirality for the spin textures and allows stabilising configurations with nontrivial topology. Moreover, it has many crucial consequences on the dynamical properties of these topological structures, including chiral domain walls (DWs) and magnetic skyrmions. In the recent years the study of noncollinear spin textures has been extended from single ultrathin layers to magnetic multilayers with broken inversion symmetry. This extension of the structures in the vertical dimension allows very efficient current-induced motion and room-temperature stability for both N\'eel DWs and skyrmions. Here we show how in such multilayered systems the interlayer interactions can actually lead to more complex, hybrid chiral magnetisation arrangements. The described thickness-dependent reorientation of DWs is experimentally confirmed by studying demagnetised multilayers through circular dichroism in x-ray resonant magnetic scattering. We also demonstrate a simple yet reliable method for determining the magnitude of the DMI from static domains measurements even in the presence of these hybrid chiral structures, by taking into account the actual profile of the DWs. The advent of these novel hybrid chiral textures has far-reaching implications on how to stabilise and manipulate DWs as well as skymionic structures in magnetic multilayers.Comment: 22 pages, 5 figure

    Seebeck effect in the conducting LaAlO_{3}/SrTiO_{3} interface

    Full text link
    The observation of metallic behavior at the interface between insulating oxides has triggered worldwide efforts to shed light on the physics of these systems and clarify some still open issues, among which the dimensional character of the conducting system. In order to address this issue, we measure electrical transport (Seebeck effect, Hall effect and conductivity) in LaAlO_{3}/SrTiO_{3} interfaces and, for comparison, in a doped SrTiO_{3} bulk single crystal. In these experiments, the carrier concentration is tuned, using the field effect in a back gate geometry. The combined analysis of all experimental data at 77 K indicates that the thickness of the conducting layer is ~7 nm and that the Seebeck effect data are well described by a two-dimensional (2D) density of states. We find that the back gate voltage is effective in varying not only the charge density, but also the thickness of the conducting layer, which is found to change by a factor of ~2, using an electric field between -4 and +4MV/m at 77K. No enhancement of the Seebeck effect due to the electronic confinement and no evidence for two-dimensional quantization steps are observed at the interfaces.Comment: 15 pages, 5 figure
    • …
    corecore