2,380 research outputs found

    Costs of mitigating CO2 emissions from passenger aircraft

    Get PDF
    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50–100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth

    A high-dimensional, stochastic model for twin-screw granulation Part 2: Numerical methodology

    Get PDF
    In the second part of this study, we present the stochastic weighted particle population balance framework used to solve the twin-screw granulation model detailed in the first part of this study. Each stochastic jump process is presented in detail, including a new nucleation jump event capable of capturing the immersion nucleation processes in twin-screw granulation. A variable weighted inception algorithm is presented and demonstrated to reduce the computational cost of simulations by up to two orders of magnitude over traditional approaches. The relationship between the performance of the simulation algorithm and key numerical parameters within the nucleation jump process are explored and optimum operating conditions are identified. Finally, convergence studies on the complete simulation algorithm demonstrate that the algorithm is very robust against changes in the number of stochastic particles used, provided that the number of particles exceeds a minimum required for numerical stability.The authors would like to thank AstraZeneca for funding this work. This work was partially funded by EPSRC Grant 1486478 and the National Research Foundation (NRF), Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme

    Reconstructions of deltaic environments from Holocene palynological records in the Volga delta, northern Caspian Sea

    Get PDF
    This article was made available through open access by the Brunel Open Access Publishing Fund.New palynological and ostracod data are presented from the Holocene Volga delta, obtained from short cores and surface samples collected in the Damchik region, near Astrakhan, Russian Federation in the northern Caspian Sea. Four phases of delta deposition are recognized and constrained by accelerated mass spectrometry (AMS) radiocarbon ages. Palynological records show that erosive channels, dunes (Baer hills) and inter-dune lakes were present during the period 11,500–8900 cal. BP at the time of the Mangyshlak Caspian lowstand. The period 8900–3770 cal. BP was characterized regionally by extensive steppe vegetation, with forest present at times with warmer, more humid climates, and with halophytic and xerophytic vegetation present at times of drought. The period 3770–2080 cal. BP was a time of active delta deposition, with forest or woodland close to the delta, indicating relatively warm and humid climates and variable Caspian Sea levels. From 2080 cal. BP to the present-day, aquatic pollen is frequent in highstand intervals and herbaceous pollen and fungal hyphae frequent in lowstand intervals. Soils and incised valley sediments are associated with the regional Derbent regression and may be time-equivalent with the ‘Medieval Warm Period’. Fungal spores are an indicator of erosional or aeolian processes, whereas fungal hyphae are associated with soil formation. Freshwater algae, ostracods and dinocysts indicate mainly freshwater conditions during the Holocene with minor brackish influences. Dinocysts present include Spiniferites cruciformis, Caspidinium rugosum, Impagidinium caspienense and Pterocysta cruciformis, the latter a new record for the Caspian Sea. The Holocene Volga delta is a partial analogue for the much larger oil and gas bearing Mio-Pliocene palaeo-Volga delta.Funding for the data collection and field work was provided from the following sources: 1 – IGCP-UNESCO 2003–2008 (Project 481 CASPAGE, Dating Caspian Sea Level Change); 2 – NWO, Netherlands Science Foundation and RFFI, Russian Science Foundation 2005–2008 (Programme: ‘VHR Seismic Stratigraphy and Paleoecology of the Holocene Volga Delta’); and 3 – BP Exploration (Caspian Sea) Sea Ltd. (Azeri-Chirag-Gunashli) 2005–2008 (‘Unravelling the Small-Scale Stratigraphy and Sediment Dynamics of the Modern Volga Delta Using VHR Marine Geophysics’). The palynological work was funded jointly by BP Exploration (Caspian Sea) Ltd., Delft University of Technology and KrA Stratigraphic Ltd. Ostracod analyses were funded by StrataData Ltd. and funding for two additional radiocarbon dates provided by Deltares

    A practical experiment to teach students continuous flow and physico-chemical methods: acetylation of ethylene diamine in liquid bi-phase

    Get PDF
    Despite growing applications being reported both in academia and industry, continuous flow chemistry remains a relatively untaught field across most chemistry undergraduate courses. This is particularly true in laboratory practical classes, where it is often deemed simpler to carry out synthetic reactions in traditional batch mode using round-bottomed flasks. Herein, we report the development of an undergraduate project that utilises cheap and readily available materials to construct continuous flow reactors. The students compare the performance of different types of reactors and conditions in a biphasic selective acetylation of a symmetrical diamine. Throughout the investigation, the students can vary multiple parameters as they optimise the reaction, thus actively learning and readjusting them based on their improved understanding. The experiments give the students an appreciation of continuous flow techniques in comparison to batch

    Radar tracking and motion-sensitive cameras on flowers reveal the development of pollinator multi-destination routes over large spatial scales.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tCentral place foragers, such as pollinating bees, typically develop circuits (traplines) to visit multiple foraging sites in a manner that minimizes overall travel distance. Despite being taxonomically widespread, these routing behaviours remain poorly understood due to the difficulty of tracking the foraging history of animals in the wild. Here we examine how bumblebees (Bombus terrestris) develop and optimise traplines over large spatial scales by setting up an array of five artificial flowers arranged in a regular pentagon (50 m side length) and fitted with motion-sensitive video cameras to determine the sequence of visitation. Stable traplines that linked together all the flowers in an optimal sequence were typically established after a bee made 26 foraging bouts, during which time only about 20 of the 120 possible routes were tried. Radar tracking of selected flights revealed a dramatic decrease by 80% (ca. 1500 m) of the total travel distance between the first and the last foraging bout. When a flower was removed and replaced by a more distant one, bees engaged in localised search flights, a strategy that can facilitate the discovery of a new flower and its integration into a novel optimal trapline. Based on these observations, we developed and tested an iterative improvement heuristic to capture how bees could learn and refine their routes each time a shorter route is found. Our findings suggest that complex dynamic routing problems can be solved by small-brained animals using simple learning heuristics, without the need for a cognitive map.This research was supported by a combined grant from the Wellcome Trust, the Biotechnology and Biological Sciences Research Council, and the Engineering and Physical Sciences Research Council (BB/F52765X/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Isolating and Reconstructing Key Components of North Atlantic Ocean Variability From a Sclerochronological Spatial Network

    Get PDF
    This is the final version. Available from AGU via the DOI in this record.Our understanding of North Atlantic Ocean variability within the coupled climate system is limited by the brevity of instrumental records and a deficiency of absolutely dated marine proxies. Here we demonstrate that a spatial network of marine stable oxygen isotope series derived from molluscan sclerochronologies (δ18Oshell) can provide skillful annually resolved reconstructions of key components of North Atlantic Ocean variability with absolute dating precision. Analyses of the common δ18Oshell variability, using principal component analysis, highlight strong connections with tropical North Atlantic and subpolar gyre (SPG) sea surface temperatures and sea surface salinity in the North Atlantic Current (NAC) region. These analyses suggest that low-frequency variability is dominated by the tropical Atlantic signal while decadal variability is dominated by variability in the SPG and salinity transport in the NAC. Split calibration and verification statistics indicate that the composite series produced using the principal component analysis can provide skillful quantitative reconstructions of tropical North Atlantic and SPG sea surface temperatures and NAC sea surface salinities over the industrial period (1864–2000). The application of these techniques with extended individual δ18Oshell series provides powerful baseline records of past North Atlantic variability into the unobserved preindustrial period. Such records are essential for developing our understanding of natural climate variability in the North Atlantic Ocean and the role it plays in the wider climate system, especially on multidecadal to centennial time scales, potentially enabling reduction of uncertainties in future climate predictions

    Self-Optimising Reactive Extractions: Towards the Efficient Development of Multi-Step Continuous Flow Processes

    Get PDF
    Downstream purification of products and intermediates is essential for the development of continuous flow processes. Described herein, is a study on the use of a modular and reconfigurable continuous flow platform for the self-optimisation of reactive extractions and multi-step reaction-extraction processes. The selective extraction of one amine from a mixture of two similar amines was achieved with an optimum separation of 90%, and in this case, the black-box optimisation approach was superior to global polynomial modelling. Furthermore, this methodology was utilised to simultaneously optimise the continuous flow synthesis and work-up of N-benzyl-α-methylbenzylamine with respect to four variables, resulting in a significantly improved purity

    Two-neutron knockout from neutron-deficient 34^{34}Ar, 30^{30}S, and 26^{26}Si

    Get PDF
    Two-neutron knockout reactions from nuclei in the proximity of the proton dripline have been studied using intermediate-energy beams of neutron-deficient 34^{34}Ar, 30^{30}S, and 26^{26}Si. The inclusive cross sections, and also the partial cross sections for the population of individual bound final states of the 32^{32}Ar, 28^{28}S and 24^{24}Si knockout residues, have been determined using the combination of particle and γ\gamma-ray spectroscopy. Similar to the two-proton knockout mechanism on the neutron-rich side of the nuclear chart, these two-neutron removal reactions from already neutron-deficient nuclei are also shown to be consistent with a direct reaction mechanism.Comment: Phys. Rev. C, rapid communication, in pres

    Thinking differently about sustainability: experiences from the UK Open University

    Get PDF
    Systems thinking is often invoked as a panacea for dealing with issues of sustainable development. Imperatives towards being more holistic - getting the bigger picture – are often coupled with a need for greater interdisciplinarity - joined-up-thinking – particularly amongst triple bottom line disciplines of economics, social studies and natural sciences. So why are systems thinking courses not more prevalent? And how might the teaching of systems thinking enhance the value of thinking differently about sustainable development? The Open University, UK, is a recognised international leader in the provision of Systems education for over 40 years. More recent experiences with the launch of a postgraduate Systems Thinking in Practice suite of qualifications at Certificate, Diploma, and Masters level, suggest an appetite for systems thinking amongst mature-age part-time students from a variety of professional backgrounds with an interest in learning for sustainability. This paper outlines three key features of the two core modules of the programme - epistemic understanding, active pedagogy, and design praxis. Significantly, these attributes have helped to complement rather than replace existing skill-sets amongst professionals from different sectors working in the field of sustainable development
    • …
    corecore