830 research outputs found
Neurotoxicité des pesticides : quel impact sur les maladies neurodégénératives ?
Several epidemiological studies suggest that pesticides could lead to neurodegenerative diseases such as Parkinson\u27s and Alzheimer\u27s diseases. Among pesticides, insecticides appear more neurotoxic than others but the neurotoxic mechanisms leading to adverse health effects remain unclear. The currently used pesticides such as rotenone and paraquat could disrupt mitochondrial bioenergetic function, reactive oxygen metabolism, redox function and promote alpha-synuclein aggregation. In addition, recent studies demonstrate that genetic susceptibility to Parkinson\u27s disease could monitor pesticide susceptibility, as demonstrated for polymorphisms in pesticide metabolizing enzymes that are involved in organophosphorus sensitivity
A confirmed location in the Galactic halo for the high-velocity cloud 'chain A'
The high-velocity clouds of atomic hydrogen, discovered about 35 years ago,
have velocities inconsistent with simple Galactic rotation models that
generally fit the stars and gas in the Milky Way disk. Their origins and role
in Galactic evolution remain poorly understood, largely for lack of information
on their distances. The high-velocity clouds might result from gas blown from
the Milky Way disk into the halo by supernovae, in which case they would enrich
the Galaxy with heavy elements as they fall back onto the disk. Alternatively,
they may consist of metal-poor gas -- remnants of the era of galaxy formation,
accreted by the Galaxy and reducing its metal abundance. Or they might be truly
extragalactic objects in the Local Group of galaxies. Here we report a firm
distance bracket for a large high-velocity cloud, Chain A, which places it in
the Milky Way halo (2.5 to 7 kiloparsecs above the Galactic plane), rather than
at an extragalactic distance, and constrains its gas mass to between 10^5 and 2
times 10^6 solar masses.Comment: 8 pages, including 4 postscript figures. Letter to Nature, 8 July
199
Updated review of postmortem biochemical exploration of hypothermia with a presentation of standard strategy of sampling and analyses.
Hypothermia is defined as a core body temperature below 35°C and can be caused by environmental exposure, drug intoxication, metabolic or nervous system dysfunction. This lethal pathology with medico-legal implications is complex to diagnose because macroscopic and microscopic lesions observed at the autopsy and the histological analysis are suggestive but not pathognomonic. Postmortem biochemical explorations have been progressively developed through the study of several biomarkers to improve the diagnosis decision cluster. Here, we present an updated review with novel biomarkers (such as catecholamines O-methylated metabolites, thrombomodulin and the cardiac oxyhemoglobin ratio) as well as some propositional interpretative postmortem thresholds and, to the best of our knowledge, for the first time, we present the most adapted strategy of sampling and analyses to identify biomarkers of hypothermia. For our consideration, the most relevant identified biomarkers are urinary catecholamines and their O-methylated metabolites, urinary free cortisol, blood cortisol, as well as blood, vitreous humor and pericardial fluid for ketone bodies and blood free fatty acids. These biomarkers are increased in response either to cold-mediated stress or to bioenergetics ketogenesis crisis and significantly contribute to the diagnosis by exclusion of death by hypothermia
Early compaction at day 3 may be a useful additional criterion for embryo transfer
PURPOSE: The reduction of the number of embryos transferred while maintaining a satisfactory rate of pregnancy (PR) with in vitro fertilization calls for a refined technique of embryonic selection. This prospective study investigates the significance of early embryonic compaction at day 3 as a marker of the chances of implantation. METHODS: We examined 317 transfers and their outcome involving 509 embryos including 91 compacted embryos. RESULTS: Early compaction seems linked with the ovarian response to stimulation and embryonic quality. The PR is significantly increased when the embryonic cohort contains at least one compacted embryo (44% versus 29.5%, p = 0.01), and when at least one compacted embryo is transferred (44% versus 31%, p < 0.05). The analysis of our single embryo transfers shows that the implantation rates are significantly better for compacted embryos (50% versus 30%, p < 0.05) (OR 2.98; CI 1.02-5.28). CONCLUSION: Thus, early compaction, sometimes observed at day 3, may serve as a useful additional criterion for selecting the embryos transferred
Erratum. Maternal ageing impairs mitochondrial DNA kinetics during early embryogenesis in mice
STUDY QUESTION: Does ageing affect the kinetics of the mitochondrial pool during oogenesis and early embryogenesis?
SUMMARY ANSWER: While we found no age-related change during oogenesis, the kinetics of mitochondrial DNA content and the expression of the factors involved in mitochondrial biogenesis appeared to be significantly altered during embryogenesis.
WHAT IS KNOWN ALREADY: Oocyte mitochondria are necessary for embryonic development. The morphological and functional alterations of mitochondria, as well as the qualitative and quantitative mtDNA anomalies, observed during ovarian ageing may be responsible for the alteration of oocyte competence and embryonic development.
STUDY DESIGN, SIZE, DURATION: The study, conducted from November 2016 to November 2017, used 40 mice aged 5-8Â weeks and 45 mice aged 9-11Â months (C57Bl6/CBA F(1)). A total of 488 immature oocytes, with a diameter ranging from 20Â ÎŒm to more than 80Â ÎŒm, were collected from ovaries, and 1088 mature oocytes or embryos at different developmental stages (two PN, one-cell, i.e. syngamy, two-cell, four-cell, eight-cell, morula and blastocyst) were obtained after ovarian stimulation and, for embryos, mating.
PARTICIPANTS/MATERIALS, SETTING, METHODS: Mitochondrial DNA was quantified by quantitative PCR. We used quantitative reverse transcriptase PCR (RT-PCR) (microfluidic method) to study the relative expression of three genes involved in the key steps of embryogenesis, i.e. embryonic genome activation (HSPA1) and differentiation (CDX2 and NANOG), two mtDNA genes (CYB and ND2) and five genes essential for mitochondrial biogenesis (PPARGC1A, NRF1, POLG, TFAM and PRKAA). The statistical analysis was based on mixed linear regression models applying a logistic link function (STATA v13.1 software), with values of PÂ <â0.05 being considered significant.
MAIN RESULTS AND THE ROLE OF CHANCE: During oogenesis, there was a significant increase in oocyte mtDNA content (PÂ <â0.0001) without any difference between the two groups of mice (PÂ =â0.73). During the first phase of embryogenesis, i.e. up to the two-cell stage, embryonic mtDNA decreased significantly in the aged mice (PÂ <â0.0001), whereas it was stable for young mice (young/old difference PÂ =â0.015). The second phase of embryogenesis, i.e. between the two-cell and eight-cell stages, was characterized by a decrease in embryonic mtDNA for young mice (PÂ =â0.013) only (young/old difference PÂ =â0.038). During the third phase, i.e. between the eight-cell and blastocyst stage, there was a significant increase in embryonic mtDNA content in young mice (PÂ <â0.0001) but not found in aged mice (young/old difference PÂ =â0.002). We also noted a faster expression of CDX2 and NANOG in the aged mice than in the young mice during the second (PÂ =â0.007 and PÂ =â0.02, respectively) and the third phase (PÂ =â0.01 and PÂ =â0.008, respectively) of embryogenesis. The expression of mitochondrial genes CYB and ND2 followed similar kinetics and was equivalent for both groups of mice, with a significant increase during the third phase (PÂ <â0.01). Of the five genes involved in mitochondrial biogenesis, i.e. PPARGC1A, NRF1, POLG, TFAM and PRKAA, the expression of three genes decreased significantly during the first phase only in young mice (NRF1, PÂ =â0.018; POLGA, PÂ =â0.002; PRKAA, PÂ =â0.010), with no subsequent difference compared to old mice. In conclusion, during early embryogenesis in the old mice, we suspect that the lack of a replicatory burst before the two-cell stage, associated with the early arrival at the minimum threshold value of mtDNA, together with the absence of an increase of mtDNA during the last phase, might potentially deregulate the key stages of early embryogenesis.
LARGE SCALE DATA: N/A.
LIMITATIONS, REASONS FOR CAUTION: Because of the ethical impossibility of working on a human, this study was conducted only on a murine model. As superovulation was used, we cannot totally exclude that the differences observed were, at least partially, influenced by differences in ovarian response between young and old mice.
WIDER IMPLICATIONS OF THE FINDINGS: Our findings suggest a pathophysiological explanation for the link observed between mitochondria and the deterioration of oocyte quality and early embryonic development with age.
STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the University of Angers, France, by the French national research centres INSERM and the CNRS and, in part, by PHASE Division, INRA. There are no competing interests
SAURON Observations of Disks in Early-Type Galaxies
We briefly describe the SAURON project, aimed at determining the intrinsic
shape and internal dynamics of spheroids. We focus here on the ability of
SAURON to identify gaseous and stellar disks and to measure their morphology
and kinematics. We illustrate some of our results with complete maps of
NGC3377, NGC3623, and NGC4365.Comment: 4 pages, 4 figures (newpasp.sty). To appear in ASP Conf. Series
"Galaxy Disks and Disk Galaxies", eds. J.G. Funes S.J. & E.M. Corsini.
Version with full resolution images available at
http://www.strw.leidenuniv.nl/~bureau/pub_list.htm
Testing the Children: Do Non-Genetic Health-Care Providers Differ in Their Decision to Advise Genetic Presymptomatic Testing on Minors? A Cross-Sectional Study in Five Countries in the European Union
BACKGROUND: Within Europe many guidelines exist regarding the genetic testing of minors. Predictive and presymptomatic genetic testing of minors is recommended for disorders for which medical intervention/preventive measures exist, and for which early detection improves future medical health. AIM: This study, which is part of the larger 5th EU-framework "genetic education" (GenEd) study, aimed to evaluate the self-reported responses of nongenetic health-care providers in five different EU countries (Germany, France, Sweden, the United Kingdom, and the Netherlands) when confronted with a parent requesting presymptomatic testing on a minor child for a treatable disease. METHODS: A cross-sectional study design using postal, structured scenario-based questionnaires that were sent to 8129 general practitioners (GPs) and pediatricians, between July 2004 and October 2004, addressing self-reported management of a genetic case for which early medical intervention during childhood is beneficial, involving a minor. RESULTS: Most practitioners agreed on testing the oldest child, aged 12 years (81.5% for GPs and 87.2% for pediatricians), and not testing the youngest child, aged 6 months (72.6% for GPs and 61.3% for pediatricians). After multivariate adjustment there were statistical differences between countries in recommending a genetic test for the child at the age of 8 years. Pediatricians in France (50%) and Germany (58%) would recommend a test, whereas in the United Kingdom (22%), Sweden (30%), and the Netherlands (32%) they would not. CONCLUSION: Even though presymptomatic genetic testing in minors is recommended for disorders for which medical intervention exists, EU physicians are uncertain at what age starting to do so in young children
Métabolomique et spectrométrie de masse : de nouvelles perspectives en analyse biomédicale
Metabolomics is defined as an integrative approach consisting in the comprehensive analysis of all of the small molecules of a biological system (the "metabolome"). The main objective of metabolomics in medecine is to discover metabolic biomarkers for diseases. Mass spectrometry (MS) coupled to liquid or gas chromatography is amongst major analytical tools used in metabolomics. However, the holistic approach used in metabolomics requires very good performances of the analytical system (chromatographic column and MS equipment) and the use of non-conventional validation strategies. Metabolomics workflow can be divided in three main steps: sample preparation, MS data acquisition and processing, and statistical analysis. Processing of the "raw" data (obtained after MS acquisition) is mostly required to normalise chromatographic conditions and to carry out accurate quantification of MS features. Features resulting from this processing may be identified later. The statistical analyses include typically multivariate techniques such as supervised and non-supervised methods. Supervised methods make use of the response variable (e.g., case/control) for model construction while non-supervised methods do not use this piece of information. When the study is focused on a particular set of metabolites, targeted metabolomics could be an interesting alternative to the holistic approach since it may allow absolute quantitation and be associated with a reduced cost
Are zona pellucida genes involved in recurrent oocyte lysis observed during in vitro fertilization?
PURPOSE: Complete oocyte lysis in in vitro fertilization (IVF) is a rare event, but one against which we remain helpless. The recurrence of this phenomenon in some women in each of their IVF attempts, regardless of treatment, together with the results of animal experiments led us to investigate the possible involvement of the genes encoding for the glycoproteins constituting the zona pellucida (ZP). PATIENTS & METHODS: Over the last ten years, during which we treated over 500 women each year, three women suffered recurrent oocyte lysis during their IVF attempts in our Centre for Reproductive Biology. For each of these three cases, we sequenced the four genes and promoter sequences encoding the glycoproteins of the ZP. The sequence variations likely to cause a change in protein expression or structure, were investigated in a control group of 35 women who underwent IVF without oocyte lysis and with normal rates of fertilization. RESULTS & CONCLUSION: We found no mutations in the ZP genes sequenced. Only some polymorphisms present in the control group and in the general population were detected, excluding their specific involvement in the phenotype observed. Thus, although we suspected that complete oocyte lysis was due to a genetic cause, it did not seem possible to directly incriminate the genes encoding the proteins of the ZP in the observed phenotype. Further study of the genes involved in the processing and organization of ZP glycoproteins may allow elucidation of the mechanism underlying recurrent oocyte lysis during in vitro fertilization
Molecular characterization of corona radiata cells from patients with diminished ovarian reserve using microarray and microfluidic-based gene expression profiling
BACKGROUND: Diminished ovarian reserve (DOR) is one of the causes of infertility in young women. In this prospective study, gene expression profiling (GEP) of corona radiata cells (CRC) was performed to identify genes deregulated in DOR patients. METHODS: Microarray-based GEP of CRC isolated from eight women undergoing IVF was performed to identify genes differentially expressed between patients with normal ovarian reserve and DOR patients. Microfluidic-based quantitative RT-PCR assays were used to validate selected transcripts on 40 independent patients. A principal component analysis was used to identify more homogeneous subgroups of DOR patients. In silico analyses focusing on cis-regulation were performed to refine the interactions between patient\u27s biological characteristics and their GEP. RESULTS: Forty-eight transcripts were differentially expressed, including CXXC finger protein 5 (CXXC5), forkhead box C1 (FOXC1) (down-regulated in DOR) as well as connective tissue growth factor (CTGF), follistatin-like 3 (FSTL3), prostaglandin-endoperoxide synthase 2 (PTGS2) and suppressor of cytokine signaling 2 (SOCS2) (up-regulated in DOR). According to these transcripts, two DOR patients\u27 subgroups (DOR Gr1 and Gr2) were identified. In DOR Gr2 patients, C-terminal domain 2 (CITED2), CTGF, growth arrest-specific 1 (GAS1), insulin receptor substrate 2 (IRS2), PTGS2, SOCS2 and Versican (VCAN) were expressed at significantly higher levels and CXXC5, FOXC1, guanylate-binding protein 2 (GBP2) and zinc finger MIZ-domain containing 1 (ZMIZ1) at significantly lower levels. Higher baseline estradiol (E(2)) levels were observed in DOR Gr2 patients (P < 0.006). The in silico analyses suggested that all 11 genes differentially expressed between DOR Gr1 and DOR Gr2 subgroups could be transcriptional targets of estrogen. CONCLUSIONS: Despite small sample size limitations, 12 genes deregulated in the CRC of DOR patients were identified, which could be involved in DOR pathogenesis. A DOR patient\u27s subgroup with high baseline E(2) levels and deregulated estrogen-responsive genes was also identified
- âŠ