1,178 research outputs found

    Insect eggs induce a systemic acquired resistance in Arabidopsis.

    Get PDF
    Although they constitute an inert stage of the insect's life, eggs trigger plant defences that lead to egg mortality or attraction of egg parasitoids. We recently found that salicylic acid (SA) accumulates in response to oviposition by the Large White butterfly Pieris brassicae, both in local and systemic leaves, and that plants activate a response that is similar to the recognition of pathogen-associated molecular patterns (PAMPs), which are involved in PAMP-triggered immunity (PTI). Here we discovered that natural oviposition by P. brassicae or treatment with egg extract inhibit growth of different Pseudomonas syringae strains in Arabidopsis through the activation of a systemic acquired resistance (SAR). This egg-induced SAR involves the metabolic SAR signal pipecolic acid, depends on ALD1 and FMO1, and is accompanied by a stronger induction of defence genes upon secondary infection. Although P. brassicae larvae showed a reduced performance when feeding on Pseudomonas syringae-infected plants, this effect was less pronounced when infected plants had been previously oviposited. Altogether, our results indicate that egg-induced SAR might have evolved as a strategy to prevent the detrimental effect of bacterial pathogens on feeding larvae

    Experiments towards quantum information with trapped Calcium ions

    Full text link
    Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap is the prerequisite for quantum information experiments with trapped ions. With resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we have cooled one and two 40Ca+ ions to the ground state of vibration with up to 99.9% probability. With a novel cooling scheme utilizing electromagnetically induced transparency on the S1/2 - P1/2 manifold we have achieved simultaneous ground state cooling of two motional sidebands 1.7 MHz apart. Starting from the motional ground state we have demonstrated coherent quantum state manipulation on the S1/2 - D5/2 quadrupole transition at 729 nm. Up to 30 Rabi oscillations within 1.4 ms have been observed in the motional ground state and in the n=1 Fock state. In the linear quadrupole rf-trap with 700 kHz trap frequency along the symmetry axis (2 MHz in radial direction) the minimum ion spacing is more than 5 micron for up to 4 ions. We are able to cool two ions to the ground state in the trap and individually address the ions with laser pulses through a special optical addressing channel.Comment: Proceedings of the ICAP 2000, Firenz

    Feasibility of therapeutic pneumoperitoneum in a large animal model using a microvaporisator

    Get PDF
    Background: Multimodal therapy is used increasingly in advanced gastrointestinal tumors. Potential benefits of using an intraoperative adjuvant therapy during laparoscopy for cancer have been documented in animal studies. The aim of this study was to develop a device that could deliver such an intraoperative drug therapy. Methods: We developed a micropump suitable for minimally invasive surgery procedures that allowed microdroplets of therapeutic substance to be distributed into the pneumoperitoneum (CO2), creating a "therapeutic pneumoperitoneum.” A closed-loop control system regulates drug delivery according to the gas flow. In vitro, the micropump is able to aerosolize various aqueous and ethanol solutions, including cytostatic and bacteriostatic drugs and adhesionmodulating agents. The size of the microdroplets has been optimized to prevent visual artifacts. Results: The micropump was tested in an animal model (pig). The system was inserted into a 5-mm trocar. After insufflation of a 12-mm CO2 pneumoperitoneum, laparoscopic sigmoid colon resections could be performed with no special difficulties. No fog developed, and no systemrelated complication was observed. At autopsy, the active principle was distributed to all exposed peritoneal surfaces. Conclusions: As opposed to conventional peritoneal washing, therapeutic pneumoperitoneum reaches the entire peritoneal surface, allowing an optimal drug distribution. Drug diffusion into the tissues is enhanced by the intraperitoneal pressure. Precise determination of the instantaneous and total drug quantity is possible. Therefore, this drug delivery system has several advantages over conventional irrigation. Its potential domains of application are locoregional cancer therapy, prevention of port-site recurrences, immunomodulation, analgesia, peritonitis, and prevention of postoperative adhesion

    Life Cycle of Multi Technology Machine Tools – Modularization and Integral Design

    Get PDF
    AbstractFor reasons of high flexibility but still maximum productivity, machine tools integrating various production technologies have recently received particular attention. Combining and integrating multiple manufacturing techniques into one single system in early stages of the product emergence process is challenging. To keep the effort for implementation to a minimum, an initiation already in the concept phase is being actively pursued. Design guidelines are currently investigated based on the examination of different technology combinations.This approach focuses on systematic conceptual design for such hybrid machine technologies. Product architectures are used to describe the modularity and create a specific delimitation for standardization. Reference product architectures for Multi Technology Machine Tools (MTMT) carry high potential for saving expenses in product development. The main emphasis is on technology and system integration. A technological similarity assessment of the single processes involved forms the basis of this approach to assure potential for synergies. Monetary aspects in early stages of product development are considered. Based on the analysis a generic system model is connected with general product architectures for MTMT.The method introduced is validated by a Multi-Technology Machining Centre with two simultaneously usable workspaces integrating a milling spindle and two laser processing units. The research undertaken is part of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” and has been funded by German Research Foundation (DFG)

    Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps

    Full text link
    We investigate single ions of 40Ca+^{40}Ca^+ in Paul traps for quantum information processing. Superpositions of the S1/2_{1/2} electronic ground state and the metastable D5/2_{5/2} state are used to implement a qubit. Laser light on the S1/2_{1/2} \leftrightarrow D5/2_{5/2} transition is used for the manipulation of the ion's quantum state. We apply sideband cooling to the ion and reach the ground state of vibration with up to 99.9% probability. Starting from this Fock state n=0>|n=0>, we demonstrate coherent quantum state manipulation. A large number of Rabi oscillations and a ms-coherence time is observed. Motional heating is measured to be as low as one vibrational quantum in 190 ms. We also report on ground state cooling of two ions.Comment: 12 pages, 6 figures. submitted to Journal of Modern Optics, Special Issue on Quantum Optics: Kuehtai 200

    Novel birch pollen specific immunotherapy formulation based on contiguous overlapping peptides.

    Get PDF
    BACKGROUND: Synthetic contiguous overlapping peptides (COPs) may represent an alternative to allergen extracts or recombinant allergens for allergen specific immunotherapy. In combination, COPs encompass the entire allergen sequence, providing all potential T cell epitopes, while preventing IgE conformational epitopes of the native allergen. METHODS: Individual COPs were derived from the sequence of Bet v 1, the major allergen of birch pollen, and its known crystal structure, and designed to avoid IgE binding. Three sets of COPs were tested in vitro in competition ELISA and basophil degranulation assays. Their in vivo reactivity was determined by intraperitoneal challenge in rBet v 1 sensitized mice as well as by skin prick tests in volunteers with allergic rhinoconjunctivitis to birch pollen. RESULTS: The combination, named AllerT, of three COPs selected for undetectable IgE binding in competition assays and for the absence of basophil activation in vitro was unable to induce anaphylaxis in sensitized mice in contrast to rBet v 1. In addition no positive reactivity to AllerT was observed in skin prick tests in human volunteers allergic to birch pollen. In contrast, a second set of COPs, AllerT4-T5 displayed some residual IgE binding in competition ELISA and a weak subliminal reactivity to skin prick testing. CONCLUSIONS: The hypoallergenicity of contiguous overlapping peptides was confirmed by low, if any, IgE binding activity in vitro, by the absence of basophil activation and the absence of in vivo induction of allergic reactions in mouse and human. TRIAL REGISTRATION: ClinicalTrials.gov NCT01719133

    Why the move to microfluidics for protein analysis?

    Get PDF
    There has been a recent trend towards the miniaturization of analytical tools, but what are the advantages of microfluidic devices and when is their use appropriate? Recent advances in the field of micro-analytical systems can be classified according to instrument performance (which refers here to the desired property of the analytical tool of interest) and two important features specifically related to miniaturisation, namely reduction of the sample volume and the time-to-result. Here we discuss the contribution of these different parameters and aim to highlight the factors of choice in the development and use of microfluidic devices dedicated to protein analysis
    corecore