134 research outputs found

    Correlation Effects on Stability in Pu Metal and Its Alloys

    Full text link
    The existence of six crystallographic allotropes from room temperature up to the solid-liquid transition just above 913 K at atmospheric pressure makes solid Plutonium unique among the elements in the periodic table. Among these phases (labeled {alpha}, {beta}, {gamma}, {delta}{delta}{prime}), and {var_epsilon}, the {delta} phase, stable between 593 K and 736 K, has commanded considerable interest in the metallurgical and solid state communities. In contrast to the low-temperature monoclinic {alpha} phase, which is brittle, the face-centered cubic (fcc) {delta} phase is ductile, a property that makes it convenient for engineering applications. This phase can also be stabilized through alloying with a number of other elements such as Ga, Al, Sc, and Am

    High correlation of the proteome patterns in bone marrow and peripheral blood blast cells in patients with acute myeloid leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When comparing myelogenous blasts from bone marrow and peripheral blood, immunophenotyping usually show a strong correlation of expression of surface antigens. However, it remains to be determined, whether this correlation also exists on the level of protein expression.</p> <p>Method</p> <p>Therefore, we investigated both bone marrow and peripheral blood blast cells from six patients with newly diagnosed acute myeloid leukemia (AML) using conventional two-dimensional electrophoresis in the first dimension and linear polyacrylamide gels (12%) in the second dimension. Proteins were visualized using the silver staining method and image analysis was performed using the PDQuest system.</p> <p>Results</p> <p>For each patient over 80 proteins were evaluated in the sample from peripheral blood and bone marrow. We could demonstrate that the protein expression profile of bone marrow did not significantly differ from the expression patterns of peripheral blast cells.</p> <p>Conclusion</p> <p>The proteome-set of leukemic blast cells from marrow and blood, does not differ substantially when drawn from AML patients with over 80 percent blast cells in both compartments. This indicates that in AML, blasts from peripheral blood samples can be considered suitable for investigations of the proteome using 2D-electrophoresis.</p

    Hawk Eyes II: Diurnal Raptors Differ in Head Movement Strategies When Scanning from Perches

    Get PDF
    Background Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper\u27s Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species. Conclusions Cooper\u27s Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction

    Different Transcript Patterns in Response to Specialist and Generalist Herbivores in the Wild Arabidopsis Relative Boechera divaricarpa

    Get PDF
    BACKGROUND: Plants defend themselves against herbivorous insects, utilizing both constitutive and inducible defenses. Induced defenses are controlled by several phytohormone-mediated signaling pathways. Here, we analyze transcriptional changes in the North American Arabidopsis relative Boechera divaricarpa in response to larval herbivory by the crucifer specialist lepidopteran Plutella xylostella (diamondback moth) and by the generalist lepidopteran Trichoplusia ni (cabbage semilooper), and compare them to wounding and exogenous phytohormone application. METHODOLOGY/PRINCIPAL FINDINGS: We use a custom macroarray constructed from B. divaricarpa herbivory-regulated cDNAs identified by suppression subtractive hybridization and from known stress-responsive A. thaliana genes for transcript profiling after insect herbivory, wounding and in response to jasmonate, salicylate and ethylene. In addition, we introduce path analysis as a novel approach to analyze transcript profiles. Path analyses reveal that transcriptional responses to the crucifer specialist P. xylostella are primarily determined by direct effects of the ethylene and salicylate pathways, whereas responses to the generalist T. ni are influenced by the ethylene and jasmonate pathways. Wound-induced transcriptional changes are influenced by all three pathways, with jasmonate having the strongest effect. CONCLUSIONS/SIGNIFICANCE: Our results show that insect herbivory is distinct from simple mechanical plant damage, and that different lepidopteran herbivores elicit different transcriptional responses

    Chemical Diversity and Complexity of Scotch Whisky as Revealed by High-Resolution Mass Spectrometry

    Get PDF
    Scotch Whisky is an important product, both culturally and economically. Chemically, Scotch Whisky is a complex mixture, which comprises thousands of compounds, the nature of which are largely unknown. Here, we present a thorough overview of the chemistry of Scotch Whisky as observed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Eighty-five whiskies, representing the majority of Scotch Whisky produced and sold, were analyzed by untargeted high-resolution mass spectrometry. Thousands of chemical formulae were assigned for each sample based on parts-per-billion mass accuracy of FT-ICR MS spectra. For the first time, isotopic fine structure analysis was used to confirm the assignment of high molecular weight CHOS species in Scotch Whisky. The assigned spectra were compared using a number of visualization techniques, including van Krevelen diagrams, double bond equivalence (DBE) plots, as well as heteroatomic compound class distributions. Additionally, multivariate analysis, including PCA and OPLS-DA, was used to interpret the data, with key compounds identified for discriminating between types of whisky (blend or malt) or maturation wood type. FT-ICR MS analysis of Scotch Whisky was shown to be of significant potential in further understanding of the complexity of mature spirit drinks and as a tool for investigating the chemistry of the maturation processes. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13361-016-1513-y) contains supplementary material, which is available to authorized users

    Modulating RNA structure and catalysis: lessons from small cleaving ribozymes

    Get PDF
    RNA is a key molecule in life, and comprehending its structure/function relationships is a crucial step towards a more complete understanding of molecular biology. Even though most of the information required for their correct folding is contained in their primary sequences, we are as yet unable to accurately predict both the folding pathways and active tertiary structures of RNA species. Ribozymes are interesting molecules to study when addressing these questions because any modifications in their structures are often reflected in their catalytic properties. The recent progress in the study of the structures, the folding pathways and the modulation of the small ribozymes derived from natural, self-cleaving, RNA motifs have significantly contributed to today’s knowledge in the field

    Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Down syndrome (DS; trisomy 21) is the most common genetic cause of mental retardation in the human population and key molecular networks dysregulated in DS are still unknown. Many different experimental techniques have been applied to analyse the effects of dosage imbalance at the molecular and phenotypical level, however, currently no integrative approach exists that attempts to extract the common information.</p> <p>Results</p> <p>We have performed a statistical meta-analysis from 45 heterogeneous publicly available DS data sets in order to identify consistent dosage effects from these studies. We identified 324 genes with significant genome-wide dosage effects, including well investigated genes like <it>SOD1</it>, <it>APP</it>, <it>RUNX1 </it>and <it>DYRK1A </it>as well as a large proportion of novel genes (N = 62). Furthermore, we characterized these genes using gene ontology, molecular interactions and promoter sequence analysis. In order to judge relevance of the 324 genes for more general cerebral pathologies we used independent publicly available microarry data from brain studies not related with DS and identified a subset of 79 genes with potential impact for neurocognitive processes. All results have been made available through a web server under <url>http://ds-geneminer.molgen.mpg.de/</url>.</p> <p>Conclusions</p> <p>Our study represents a comprehensive integrative analysis of heterogeneous data including genome-wide transcript levels in the domain of trisomy 21. The detected dosage effects build a resource for further studies of DS pathology and the development of new therapies.</p

    Genomics meets HIV-1

    Get PDF
    Genomics is now a core element in the effort to develop a vaccine against HIV-1. Thanks to unprecedented progress in high-throughput genotyping and sequencing, in knowledge about genetic variation in humans, and in evolutionary genomics, it is finally possible to systematically search the genome for common genetic variants that influence the human response to HIV-1. The identification of such variants would help to determine which aspects of the response to the virus are the most promising targets for intervention. However, a key obstacle to progress remains the scarcity of appropriate human cohorts available for genomic research

    Systematic Identification of Balanced Transposition Polymorphisms in Saccharomyces cerevisiae

    Get PDF
    High-throughput techniques for detecting DNA polymorphisms generally do not identify changes in which the genomic position of a sequence, but not its copy number, varies among individuals. To explore such balanced structural polymorphisms, we used array-based Comparative Genomic Hybridization (aCGH) to conduct a genome-wide screen for single-copy genomic segments that occupy different genomic positions in the standard laboratory strain of Saccharomyces cerevisiae (S90) and a polymorphic wild isolate (Y101) through analysis of six tetrads from a cross of these two strains. Paired-end high-throughput sequencing of Y101 validated four of the predicted rearrangements. The transposed segments contained one to four annotated genes each, yet crosses between S90 and Y101 yielded mostly viable tetrads. The longest segment comprised 13.5 kb near the telomere of chromosome XV in the S288C reference strain and Southern blotting confirmed its predicted location on chromosome IX in Y101. Interestingly, inter-locus crossover events between copies of this segment occurred at a detectable rate. The presence of low-copy repetitive sequences at the junctions of this segment suggests that it may have arisen through ectopic recombination. Our methodology and findings provide a starting point for exploring the origins, phenotypic consequences, and evolutionary fate of this largely unexplored form of genomic polymorphism
    corecore