34 research outputs found

    Universalité du crossover de Mott à demi-remplissage et effets de la répulsion coulombienne aux premiers voisins sur la dynamique supraconductrice des isolants de Mott dopés aux trous

    Get PDF
    Le mécanisme d'appariement donnant naissance à la supraconductivité non conventionnelle reste disputé à ce jour. Une des principales difficultés sous-jacentes nous vient du lien entre cette supraconductivité et la physique de Mott. Dans le but d'éclaircir cela, cette thèse propose de traiter trois points. Tout d'abord, nous nous intéressons aux crossovers caractérisant le régime à haute température du modèle de Hubbard demi-rempli, soit dans une situation où les fluctuations à grande longueur d'onde et même l'ordre à longue portée suggèrent que la transition de Mott n'est pas pertinente. En comparant les résultats issus de la théorie de champ moyen dynamique (DMFT), de la théorie de champ moyen dynamique cellulaire (CDMFT), et de l'approximation d'amas dynamique (DCA), nous montrons que, bien que la plupart des crossovers soient masqués par la température de Néel, le crossover de Mott (séparant le mauvais isolant de l'isolant de Mott et caractérisé par l'ouverture prononcée du gap de Mott) survit à toute température. De plus, les différentes techniques numériques voient leurs crossovers de Mott se rejoindre à une température de l'ordre de 0.45t0.45\, t, démontrant qu'à ces températures, l'effet est dominé par la physique à très courte portée. La deuxième partie de cette thèse cherche à rendre possible l'extraction de quantités donnant accès à la dynamique supraconductrice à température finie, telle que la fonction spectrale anormale, \textit{via} la méthode d'entropie maximale. Nous avons ainsi développé la méthode MaxEntAux qui permet de calculer la fonction spectrale anormale à partir d'une fonction spectrale auxiliaire et de fonctions spectrales normales, toutes de signe constant positif et donc toutes calculables à travers la méthode d'entropie maximale. La dernière partie de cette thèse applique la méthode MaxEntAux à l'étude de la dynamique supraconductrice d'un isolant de Mott dopé aux trous et décrit par le modèle de Hubbard étendu, incorporant l'effet de la répulsion aux premiers voisins VV. Nous montrons que VV joue deux rôles antagonistes dans la dynamique supraconductrice: cette répulsion renforce l'appariement à basse fréquence à travers la constante d'échange antiferromagnétique J=4t2/(UV)J = 4t^2/(U-V) tout en accroissant la répulsion coulombienne à haute fréquence. La compétition non triviale qui en résulte tend à augmenter la température critique à faible dopage et à la diminuer à fort dopage. En parallèle, les valeurs du célèbre rapport ΔSC/Tc\Delta_{SC}/T_c que nous obtenons sont significativement plus grandes que les valeurs prédites par la théorie BCS, mais sont en très bel accord avec l'expérience et présentent une certaine universalité, notamment dans le régime de dopages intermédiaires. Enfin, VV semble également pousser le système étudié vers un ordre de charge commensurable en y favorisant la double occupation

    Computing and visualising intra-voxel orientation-specific relaxation-diffusion features in the human brain

    Get PDF
    Diffusion MRI techniques are used widely to study the characteristics of the human brain connectome in vivo. However, to resolve and characterise white matter (WM) fibres in heterogeneous MRI voxels remains a challenging problem typically approached with signal models that rely on prior information and constraints. We have recently introduced a 5D relaxation–diffusion correlation framework wherein multidimensional diffusion encoding strategies are used to acquire data at multiple echo‐times to increase the amount of information encoded into the signal and ease the constraints needed for signal inversion. Nonparametric Monte Carlo inversion of the resulting datasets yields 5D relaxation–diffusion distributions where contributions from different sub‐voxel tissue environments are separated with minimal assumptions on their microscopic properties. Here, we build on the 5D correlation approach to derive fibre‐specific metrics that can be mapped throughout the imaged brain volume. Distribution components ascribed to fibrous tissues are resolved, and subsequently mapped to a dense mesh of overlapping orientation bins to define a smooth orientation distribution function (ODF). Moreover, relaxation and diffusion measures are correlated to each independent ODF coordinate, thereby allowing the estimation of orientation‐specific relaxation rates and diffusivities. The proposed method is tested on a healthy volunteer, where the estimated ODFs were observed to capture major WM tracts, resolve fibre crossings, and, more importantly, inform on the relaxation and diffusion features along with distinct fibre bundles. If combined with fibre‐tracking algorithms, the methodology presented in this work has potential for increasing the depth of characterisation of microstructural properties along individual WM pathways

    Bad metallic transport in a cold atom Fermi-Hubbard system

    Full text link
    Charge transport is a revealing probe of the quantum properties of materials. Strong interactions can blur charge carriers resulting in a poorly understood "quantum soup". Here we study the conductivity of the Fermi-Hubbard model, a testing ground for strong interaction physics, in a clean quantum system - ultracold 6^6Li in a 2D optical lattice. We determine the charge diffusion constant in our system by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity, which exhibits a linear temperature dependence and exceeds the Mott-Ioffe-Regel limit, two characteristic signatures of a bad metal. The techniques we develop here may be applied to measurements of other transport quantities, including the optical conductivity and thermopower
    corecore