8 research outputs found

    The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents.

    No full text
    The present study investigated the putative pro-cognitive effects of the novel selective PDE9 inhibitor BAY 73-6691. The effects on basal synaptic transmission and long-term potentiation (LTP) were investigated in rat hippocampal slices. Pro-cognitive effects were assessed in a series of learning and memory tasks using rodents as subjects. BAY 73-6691 had no effect on basal synaptic transmission in hippocampal slices prepared from young adult (7- to 8-week-old) Wistar rats. A dose of 10 mu M, but not 30 mu M BAY 73-6691 enhanced early LTP after weak tetanic stimulation. The dose effective in young adult Wistar rats did not affect LTP in hippocampal slices prepared from young (7- to 8-week-old) Fischer 344 X Brown Norway (FBNF1) rats, probably reflecting strain differences. However, it increased basal synaptic transmission and enhanced early LTP after weak tetanic stimulation in hippocampal slices prepared from very old (31 - to 35-month-old) FBNF1 rats. BAY 73-6691 enhanced acquisition, consolidation, and retention of long-term memory (LTM) in a social recognition task and tended to enhance LTM in an object recognition task. Bay 73-6691 attenuated the scoplamine-induced retention deficit in a passive avoidance task, and the MK-801-induced short-term memory deficits in a T-maze alternation task. The mechanism of action, possibly through modulation of the NO/cGMP-PKG/CREB pathway, is discussed. Our findings support the notion that PDE9 inhibition may be a novel target for treating memory deficits that are associated with aging and neurodegenerative disorders such as Alzheimer's disease

    Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc

    No full text
    The coagulation protease activated protein C (aPC) confers cytoprotective effects in various in vitro and in vivo disease models, including diabetic nephropathy. The nephroprotective effect may be related to antioxidant effects of aPC. However, the mechanism through which aPC may convey these antioxidant effects and the functional relevance of these properties remain unknown. Here, we show that endogenous and exogenous aPC prevents glomerular accumulation of oxidative stress markers and of the redox-regulating protein p66(Shc) in experimental diabetic nephropathy. These effects were predominately observed in podocytes. In vitro, aPC inhibited glucose-induced expression of p66(Shc) mRNA and protein in podocytes (via PAR-1 and PAR-3) and various endothelial cell lines, but not in glomerular endothelial cells. Treatment with aPC reversed glucose-induced hypomethylation and hyperacetylation of the p66(Shc) promoter in podocytes. The hyperacetylating agent sodium butyrate abolished the suppressive effect of aPC on p66(Shc) expression both in vitro and in vivo. Moreover, sodium butyrate abolished the beneficial effects of aPC in experimental diabetic nephropathy. Inhibition of p66(Shc) expression and mitochondrial translocation by aPC normalized mitochondrial ROS production and the mitochondrial membrane potential in glucose-treated podocytes. Genetic ablation of p66(Shc) compensated for the loss of protein C activation in vivo, normalizing markers of diabetic nephropathy and oxidative stress. These studies identify a unique mechanism underlying the cytoprotective effect of aPC. Activated PC epigenetically controls expression of the redox-regulating protein p66(Shc), thus linking the extracellular protease aPC to mitochondrial function in diabetic nephropathy

    Molecular basis of beta amyloid oligomer recognition with a conformational antibody fragment

    No full text
    Oligomers are intermediates of the β-amyloid (Aβ) peptide fibrillogenic pathway and are putative pathogenic culprits in Alzheimer’s disease (AD). Here we report the biotechnological generation and biochemical characterization of an oligomer-specific antibody fragment, KW1. KW1 not only discriminates between oligomers and other Aβ conformations, such as fibrils or disaggregated peptide; it also differentiates between different types of Aβ oligomers, such as those formed by Aβ (1–40) and Aβ (1–42) peptide. This high selectivity of binding contrasts sharply with many other conformational antibodies that interact with a large number of structurally analogous but sequentially different antigens. X-ray crystallography, NMR spectroscopy, and peptide array measurements imply that KW1 recognizes oligomers through a hydrophobic and significantly aromatic surface motif that includes Aβ residues 18–20. KW1-positive oligomers occur in human AD brain samples and induce synaptic dysfunctions in living brain tissues. Bivalent KW1 potently neutralizes this effect and interferes with Aβ assembly. By altering a specific step of the fibrillogenic cascade, it prevents the formation of mature Aβ fibrils and induces the accumulation of nonfibrillar aggregates. Our data illuminate significant mechanistic differences in oligomeric and fibril recognition and suggest the considerable potential of KW1 in future studies to detect or inhibit specific types of Aβ conformers

    Modulation of fear memory by retrieval and extinction: a clue for memory deconsolidation

    No full text
    corecore