17 research outputs found

    Beyond Lipoprotein(a) plasma measurements:Lipoprotein(a) and inflammation

    Get PDF
    Genome wide association, epidemiological, and clinical studies have established high lipoprotein(a) [Lp(a)] as a causal risk factor for atherosclerotic cardiovascular disease (ASCVD). Lp(a) is an apoB100 containing lipoprotein covalently bound to apolipoprotein(a) [apo(a)], a glycoprotein. Plasma Lp(a) levels are to a large extent determined by genetics. Its link to cardiovascular disease (CVD) may be driven by its pro-inflammatory effects, of which its association with oxidized phospholipids (oxPL) bound to Lp(a) is the most studied. Various inflammatory conditions, such as rheumatoid arthritis (RA), systemic lupus erythematosus, acquired immunodeficiency syndrome, and chronic renal failure are associated with high Lp(a) levels. In cases of RA, high Lp(a) levels are reversed by interleukin-6 receptor (IL-6R) blockade by tocilizumab, suggesting a potential role for IL-6 in regulating Lp(a) plasma levels. Elevated levels of IL-6 and IL-6R polymorphisms are associated with CVD. Therapies aimed at lowering apo(a) and thereby reducing plasma Lp(a) levels are in clinical trials. Their results will determine if reductions in apo(a) and Lp(a) decrease cardiovascular outcomes. As we enter this new arena of available treatments, there is a need to improve our understanding of mechanisms. This review will focus on the role of Lp(a) in inflammation and CVD

    High lipoprotein(a): Actionable strategies for risk assessment and mitigation.

    Get PDF
    High levels of lipoprotein(a) [Lp(a)] are causal for atherosclerotic cardiovascular disease (ASCVD). Lp(a) is the most prevalent inherited dyslipidemia and strongest genetic ASCVD risk factor. This risk persists in the presence of at target, guideline-recommended, LDL-C levels and adherence to lifestyle modifications. Epidemiological and genetic evidence supporting its causal role in ASCVD and calcific aortic stenosis continues to accumulate, although various facets regarding Lp(a) biology (genetics, pathophysiology, and expression across race/ethnic groups) are not yet fully understood. The evolving nature of clinical guidelines and consensus statements recommending universal measurements of Lp(a) and the scientific data supporting its role in multiple disease states reinforce the clinical merit to start population screening for Lp(a) now. There is a current gap in the implementation of recommendations for primary and secondary cardiovascular disease (CVD) prevention in those with high Lp(a), in part due to a lack of protocols for management strategies. Importantly, targeted apolipoprotein(a) [apo(a)]-lowering therapies that reduce Lp(a) levels in patients with high Lp(a) are in phase 3 clinical development. This review focuses on the identification and clinical management of patients with high Lp(a). Specifically, we highlight the clinical value of measuring Lp(a) and its use in determining Lp(a)-associated CVD risk by providing actionable guidance, based on scientific knowledge, that can be utilized now to mitigate risk caused by high Lp(a)

    Effects of CETP inhibition with anacetrapib on metabolism of VLDL-TG and plasma apolipoproteins C-II, C-III, and E

    Full text link
    Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR

    Association of free-living diet composition with plasma lipoprotein(a) levels in healthy adults

    No full text
    Abstract Background Lipoprotein (a) [Lp(a)] is an apoB100-containing lipoprotein with high levels being positively associated with atherosclerotic cardiovascular disease. Lp(a) levels are genetically determined. However, previous studies report a negative association between Lp(a) and saturated fatty acid intake. Currently, apoB100 lowering therapies are used to lower Lp(a) levels, and apheresis therapy is FDA approved for patients with extreme elevations of Lp(a). The current study analyzed the association of free-living diet components with plasma Lp(a) levels. Methods Dietary composition data was collected during screening visits for enrollment in previously completed lipid and lipoprotein metabolism studies at Columbia University Irving Medical Center via a standardized protocol by registered dietitians using 24 hour recalls. Data were analyzed with the Nutrition Data System for Research (Version 2018). Diet quality was calculated using the Healthy Eating Index (HEI) score. Fasting plasma Lp(a) levels were measured via an isoform-independent ELISA and apo(a) isoforms were measured using gel electrophoresis. Results We enrolled 28 subjects [Black (n = 18); Hispanic (n = 7); White (n = 3)]. The mean age was 48.3 ± 12.5 years with 17 males. Median level of Lp(a) was 79.9 nmol/L (34.4–146.0) and it was negatively associated with absolute (grams/day) and relative (percent of total calories) intake of dietary saturated fatty acids (SFA) (R = -0.43, P = 0.02, SFA …(% CAL): R = -0.38, P = 0.04), palmitic acid intake (R = -0.38, P = 0.05), and stearic acid intake (R = -0.40, P = 0.03). Analyses of associations with HEI score when stratified based on Lp(a) levels > or ≤ 100 nmol/L revealed no significant associations with any of the constituent factors. Conclusions Using 24 hour recall, we confirm previous findings that Lp(a) levels are negatively associated with dietary saturated fatty acid intake. Additionally, Lp(a) levels are not related to diet quality, as assessed by the HEI score. The mechanisms underlying the relationship of SFA with Lp(a) require further investigation

    Relationship of apolipoprotein(a) isoform size with clearance and production of lipoprotein(a) in a diverse cohort

    No full text
    Lipoprotein(a) [Lp(a)] has two main proteins, apoB100 and apo(a). High levels of Lp(a) confer an increased risk for atherosclerotic cardiovascular disease. Most people have two circulating isoforms of apo(a) differing in their molecular mass, determined by the number of Kringle IV Type 2 repeats. Previous studies report a strong inverse relationship between Lp(a) levels and apo(a) isoform sizes. The roles of Lp(a) production and fractional clearance and how ancestry affects this relationship remain incompletely defined. We therefore examined the relationships of apo(a) size with Lp(a) levels and both apo(a) fractional clearance rates (FCR) and production rates (PR) in 32 individuals not on lipid-lowering treatment. We determined plasma Lp(a) levels and apo(a) isoform sizes, and used the relative expression of the two isoforms to calculate a “weighted isoform size” (wIS). Stable isotope studies were performed, using D3-leucine, to determine the apo(a) FCR and PR. As expected, plasma Lp(a) concentrations were inversely correlated with wIS (R2 = 0.27; P = 0.002). The wIS had a modest positive correlation with apo(a) FCR (R2 = 0.10, P = 0.08), and a negative correlation with apo(a) PR (R2 = 0.11; P = 0.06). The relationship between wIS and PR became significant when we controlled for self-reported race and ethnicity (SRRE) (R2 = 0.24, P = 0.03); controlling for SRRE did not affect the relationship between wIS and FCR. Apo(a) wIS plays a role in both FCR and PR; however, adjusting for SRRE strengthens the correlation between wIS and PR, suggesting an effect of ancestry

    Small apolipoprotein(a) isoforms may predict primary patency following peripheral arterial revascularization

    No full text
    Background: High lipoprotein (a) [Lp(a)] is associated with adverse limb events in patients undergoing lower extremity revascularization. Lp(a) levels are genetically pre-determined, with LPA gene encoding for two apolipoprotein (a) [apo(a)] isoforms. Isoform size variations are driven by the number of kringle IV type 2 (KIV-2) repeats. Lp(a) levels are inversely correlated with isoform size. In this study, we examined the role of Lp(a) levels, apo(a) size, and inflammatory markers with lower extremity revascularization outcomes. Methods: Twenty-five subjects with chronic peripheral arterial disease (PAD) underwent open or endovascular lower extremity revascularization (mean age, 66.7 ± 9.7 years; Female = 12; Male = 13; Black = 8; Hispanic = 5; and White = 12). Pre- and postoperative medical history, self-reported symptoms, ankle-brachial indices (ABIs), and lower extremity duplex ultrasounds were obtained. Plasma Lp(a), apoB100, lipid panel, and pro-inflammatory markers (IL-6, IL-18, hs-CRP, TNFα) were assayed preoperatively. Isoform size was estimated using gel electrophoresis and weighted isoform size (wIS) calculated based on % isoform expression. Firth logistic regression was used to examine the relationship between Lp(a) levels and wIS with procedural outcomes: symptoms (better/worse), early primary patency at 2 to 4 weeks, ABIs, and reintervention within 3 to 6 months. We controlled for age, sex, history of diabetes, smoking, statin, antiplatelet, and anticoagulation use. Results: Median plasma Lp(a) level was 108 (interrquartile range, 44-301) nmol/L. The mean apoB100 level was 168.0 ± 65.8 mg/dL. These values were not statistically different among races. We found no association between Lp(a) levels and wIS with measured plasma pro-inflammatory markers. However, smaller apo(a) wIS was associated with occlusion of the treated lesion(s) in the postoperative period (odds ratio, 1.97; 95% confidence interval, 1.01-3.86; P < .05). The relationship of smaller apo(a) wIS with reintervention was not as strong (odds ratio, 1.57; 95% confidence interval, 0.96-2.56; P = .07). We observed no association between wIS with patient reported symptoms or change in ABIs. Conclusions: In this small study, subjects with smaller apo(a) isoform size undergoing peripheral arterial revascularization were more likely to experience occlusion in the postoperative period and/or require reintervention. Larger cohort studies identifying the mechanism and validating these preliminary data are needed to improve understanding of long-term peripheral vascular outcomes

    Endothelial function in individuals with coronary artery disease with and without type 2 diabetes mellitus

    No full text
    The goal of this study was to determine if individuals with coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) had greater endothelial dysfunction (ED) than individuals with only CAD. Flow-mediated dilation (FMD), calculated as percentage increase in brachial artery diameter in response to postischemic blood flow, was measured after an overnight fast in 2 cohorts. The first cohort included 76 participants in the Northern Manhattan Study with CAD; 25 also had T2DM. The second cohort was composed of 27 individuals with both T2DM and CAD who were participants in a study of postprandial lipemia. Combined, we analyzed 103 patients with CAD: 52 with T2DM (T2DM+) and 51 without T2DM (T2DM−). The 52 CAD T2DM+ subjects had a mean FMD of 3.9% ± 3.2%, whereas the 51 CAD T2DM− subjects had a greater mean FMD of 5.5% ± 4.0% ( P < .03). An investigation of various confounders known to affect FMD identified age and body mass index as the only significant covariates in a multiple regression model. Adjusting for age and body mass index, we found that FMD remained lower in T2DM+ subjects compared with T2DM− subjects (difference, −1.99%; P < .03). In patients with CAD, the concomitant presence of T2DM is independently associated with greater ED, as measured by FMD. This finding may be relevant to the greater early and late morbidity and mortality observed in patients with both CAD and T2DM
    corecore