83 research outputs found

    Fast Domain Growth through Density-Dependent Diffusion in a Driven Lattice Gas

    Full text link
    We study electromigration in a driven diffusive lattice gas (DDLG) whose continuous Monte Carlo dynamics generate higher particle mobility in areas with lower particle density. At low vacancy concentrations and low temperatures, vacancy domains tend to be faceted: the external driving force causes large domains to move much more quickly than small ones, producing exponential domain growth. At higher vacancy concentrations and temperatures, even small domains have rough boundaries: velocity differences between domains are smaller, and modest simulation times produce an average domain length scale which roughly follows LtζL \sim t^{\zeta}, where ζ\zeta varies from near .55 at 50% filling to near .75 at 70% filling. This growth is faster than the t1/3t^{1/3} behavior of a standard conserved order parameter Ising model. Some runs may be approaching a scaling regime. At low fields and early times, fast growth is delayed until the characteristic domain size reaches a crossover length which follows LcrossEβL_{cross} \propto E^{-\beta}. Rough numerical estimates give β=>.37\beta= >.37 and simple theoretical arguments give β=1/3\beta= 1/3. Our conclusion that small driving forces can significantly enhance coarsening may be relevant to the YB2_2Cu3_3O7δ_{7- \delta} electromigration experiments of Moeckly {\it et al.}(Appl. Phys. Let., {\bf 64}, 1427 (1994)).Comment: 18 pages, RevTex3.

    One Dimensional Oxygen Ordering in YBa2Cu3O(7-delta)

    Full text link
    A model consisting of oxygen-occupied and -vacant chains is considered, with repulsive first and second nearest-neighbor interactions V1 and V2, respectively. The statistical mechanics and the diffraction spectrum of the model is solved exactly and analytically with the only assumption V1 >> V2. At temperatures T ~ V1 only a broad maximum at (1/2,0,0) is present, while for ABS(delta - 1/2) > 1/14 at low enough T, the peak splits into two. The simple expression for the diffraction intensity obtained for T << V1 represents in a more compact form previous results of Khachaturyan and Morris[1],extends them to all delta and T/V2 and leads to a good agreement with experiment. [1] A.G.Khachaturyan and J.W.Morris, Jr., Phys.Rev.Lett. 64,76(1990)Comment: 13 pages,Revtex,3 figures available upon request but can be plotted using simple analytical functions,CNEA-CAB 92/04

    On the stability of 2 \sqrt{2} x 2 \sqrt{2} oxygen ordered superstructures in YBa2Cu3O6+x

    Full text link
    We have compared the ground-state energy of several observed or proposed " 2 \sqrt{2} x 2 \sqrt{2} oxygen (O) ordered superstructures " (from now on HS), with those of "chain superstructures" (CS) (in which the O atoms of the basal plane are ordered in chains), for different compositions x in YBa2Cu3O6+x. The model Hamiltonian contains i) the Madelung energy, ii) a term linear in the difference between Cu and O hole occupancies which controls charge transfer, and iii) covalency effects based on known results for tJt-J models in one and two dimensions. The optimum distribution of charge is determined minimizing the total energy, and depends on two parameters which are determined from known results for x=1 and x=0.5. We obtain that on the O lean side, only CS are stable, while for x=7/8, a HS with regularly spaced O vacancies added to the x=1 structure is more stable than the corresponding CS for the same x. We find that the detailed positions of the atoms in the structure, and long-range Coulomb interactions, are crucial for the electronic structure, the mechanism of charge transfer, the stability of the different phases, and the possibility of phase separation.Comment: 24 text pages, Latex, one fig. included as ps file, to be publisheb in Phys. Rev.

    Determination of the point and space groups for hydroxyapatite by computer simulation of CBED electron diffraction patterns

    No full text
    Experimentalmente se ha observado que la estructura de la hidroxiapatita natural nHAP (i.e. el componente inorgánico mayoritario de los dientes y los huesos) no ha sido completamente caracterizada hasta el momento. Esto nos lleva a estudiar las características estructurales y cristalográficas de la hidroxiapatita sintética sHAP (i.e. aquella que obedece la estequiometría de la fórmula Ca10 (PO4)6 (OH)2) por medio de diferentes técnicas, en particular la simulación computacional de los patrones de difracción electrónica, para contar con una base sólida que nos permita compararlas. En este trabajo se comentan los elementos de simetría que se observan en los patrones simulados computacionalmente de haz convergente (CBED) para sHAP, en sus versiones de zonas de Laue de orden cero (ZOLZ), de primer orden (FOLZ), de segundo orden (SOLZ) y de orden mayor (HOLZ), y se deduce su grupo espacial P63/m a partir de estos. Los resultados obtenidos se comparan con los reportados experimentalmente para nHAP

    Palladium nanoparticles from solvated atoms - stability and HRTEM characterization

    No full text
    Palladium particles of nanometric dimensions were synthesized by the chemical liquid deposition method in which the Pd atoms were co-deposited at 77 K with 2-propanol, acetone, and tetrahydrofurane vapor to obtain colloidal dispersions. The colloidal dispersions were characterized by UV-visible spectrophotometry, transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The palladium colloids synthesized by use of these solvents are very stable. A strong absorption band in the UV region suggests that quantum confinement occurs in the nanoparticles obtained by this procedure. Studies of TEM micrographs reveal average size distributions between 1 and 5 nm for all Pd colloids. Whereas particle sizes in Pd-2-propanol colloids are not very sensitive to concentration change, the particle-size average in Pd-acetone and Pd-THF increases by 0.5 nm when the concentration increases from 10(-3) to 10(-2) mol l(-1). The HRTEM results show the high crystallinity of Pd nanoparticles and three low-energy structure shapes were found: cuboctahedron, tetrakaidecahedron, and icosahedron

    Germanium nanoparticles from solvated atoms: synthesis and characterization

    No full text
    Germanium nanoparticles were synthesized by the chemical liquid deposition method (CLD) in which the Ge atoms, produced resistively, were co-deposited with 2-propanol, acetone and tetrahydrofurane vapors to obtain colloidal dispersions. The colloidal dispersions were characterized by UV-vis spectrophotometry, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction ( SAED) and Infrared Spectroscopy ( FTIR) techniques. The Germanium colloids are, in general, kinetically unstable. Strong absorption bands in the UV region suggest that nanoparticles obtained by this procedure exhibit quantum confinement. In the Ge colloids, the particle size distribution is highly sensitive to concentration change. For example, the TEM measurements revealed for the Ge-2-propanol colloid, particle sizes close to 3 nm for a concentration of 10) 3 M and 30 nm for a concentration of 10) 2 M. The HRTEM and SAED showed the high crystallinity of the nanoparticles, and it was possible to observe the typical lattice spaces of a diamond cubic Ge structure. The FTIR studies revealed the Ge-organic nature of the particles surface. Mechanisms and structures have been proposed for surface reactions
    corecore