12,185 research outputs found

    Testing symmetries in effective models of higher derivative field theories

    Full text link
    Higher derivative field theories with interactions raise serious doubts about their validity due to severe energy instabilities. In many cases the implementation of a direct perturbation treatment to excise the dangerous negative-energies from a higher derivative field theory may lead to violations of Lorentz and other symmetries. In this work we study a perturbative formulation for higher derivative field theories that allows the construction of a low-energy effective field theory being a genuine perturbations over the ordinary-derivative theory and having a positive-defined Hamiltonian. We show that some discrete symmetries are recovered in the low-energy effective theory when the perturbative method to reduce the negative-energy degrees of freedom from the higher derivative theory is applied. In particular, we focus on the higher derivative Maxwell-Chern-Simons model which is a Lorentz invariant and parity-odd theory in 2+1 dimensions. The parity violation arises in the effective action of QED3_3 as a quantum correction from the massive fermionic sector. We obtain the effective field theory which remains Lorentz invariant, but parity invariant to the order considered in the perturbative expansion.Comment: 13 pages, Sec. III, additional references added, P symmetry revised, accepted for publication in PR

    Impurity in a granular gas under nonlinear Couette flow

    Full text link
    We study in this work the transport properties of an impurity immersed in a granular gas under stationary nonlinear Couette flow. The starting point is a kinetic model for low-density granular mixtures recently proposed by the authors [Vega Reyes F et al. 2007 Phys. Rev. E 75 061306]. Two routes have been considered. First, a hydrodynamic or normal solution is found by exploiting a formal mapping between the kinetic equations for the gas particles and for the impurity. We show that the transport properties of the impurity are characterized by the ratio between the temperatures of the impurity and gas particles and by five generalized transport coefficients: three related to the momentum flux (a nonlinear shear viscosity and two normal stress differences) and two related to the heat flux (a nonlinear thermal conductivity and a cross coefficient measuring a component of the heat flux orthogonal to the thermal gradient). Second, by means of a Monte Carlo simulation method we numerically solve the kinetic equations and show that our hydrodynamic solution is valid in the bulk of the fluid when realistic boundary conditions are used. Furthermore, the hydrodynamic solution applies to arbitrarily (inside the continuum regime) large values of the shear rate, of the inelasticity, and of the rest of parameters of the system. Preliminary simulation results of the true Boltzmann description show the reliability of the nonlinear hydrodynamic solution of the kinetic model. This shows again the validity of a hydrodynamic description for granular flows, even under extreme conditions, beyond the Navier-Stokes domain.Comment: 23 pages, 11 figures; v2: Preliminary DSMC results from the Boltzmann equation included, Fig. 11 is ne

    Combined Relativistic and static analysis for all Delta B=2 operators

    Full text link
    We analyse matrix elements of Delta B=2 operators by combining QCD results with the ones obtained in the static limit of HQET. The matching of all the QCD operators to HQET is made at NLO order. To do that we have to include the anomalous dimension matrix up to two loops, both in QCD and HQET, and the one loop matching for all the Delta B=2 operators. The matrix elements of these operators are relevant for the prediction of the B-\bar B mixing, B_s meson width difference and supersymmetric effects in Delta B=2 transitions.Comment: 3 pages, 1 figure. Lattice2001(heavyquark

    Renormalization Constants of Quark Operators for the Non-Perturbatively Improved Wilson Action

    Get PDF
    We present the results of an extensive lattice calculation of the renormalization constants of bilinear and four-quark operators for the non-perturbatively O(a)-improved Wilson action. The results are obtained in the quenched approximation at four values of the lattice coupling by using the non-perturbative RI/MOM renormalization method. Several sources of systematic uncertainties, including discretization errors and final volume effects, are examined. The contribution of the Goldstone pole, which in some cases may affect the extrapolation of the renormalization constants to the chiral limit, is non-perturbatively subtracted. The scale independent renormalization constants of bilinear quark operators have been also computed by using the lattice chiral Ward identities approach and compared with those obtained with the RI-MOM method. For those renormalization constants the non-perturbative estimates of which have been already presented in the literature we find an agreement which is typically at the level of 1%.Comment: 36 pages, 13 figures. Minor changes in the text and in one figure. Accepted for publication on JHE

    Fermion Condensate and Vacuum Current Density Induced by Homogeneous and Inhomogeneous Magnetic Fields in (2+1)-Dimensions

    Full text link
    We calculate the condensate and the vacuum current density induced by external static magnetic fields in (2+1)-dimensions. At the perturbative level, we consider an exponentially decaying magnetic field along one cartesian coordinate. Non-perturbatively, we obtain the fermion propagator in the presence of a uniform magnetic field by solving the Schwinger-Dyson equation in the rainbow-ladder approximation. In the large flux limit, we observe that both these quantities, either perturbative (inhomogeneous) and non-perturbative (homogeneous), are proportional to the external field, in agreement with early expectations.Comment: 8 pages, 2 figures. Accepted for publication in Phys. Rev.

    BOSQUEJO HISTÓRICO DE LA ACADEMIA NACIONAL DE MEDICINA DE MEXICO.

    Get PDF

    Bose-Einstein condensation in antiferromagnets close to the saturation field

    Full text link
    At zero temperature and strong applied magnetic fields the ground sate of an anisotropic antiferromagnet is a saturated paramagnet with fully aligned spins. We study the quantum phase transition as the field is reduced below an upper critical Hc2H_{c2} and the system enters a XY-antiferromagnetic phase. Using a bond operator representation we consider a model spin-1 Heisenberg antiferromagnetic with single-ion anisotropy in hyper-cubic lattices under strong magnetic fields. We show that the transition at Hc2H_{c2} can be interpreted as a Bose-Einstein condensation (BEC) of magnons. The theoretical results are used to analyze our magnetization versus field data in the organic compound NiCl2NiCl_2-4SC(NH2)24SC(NH_2)_2 (DTN) at very low temperatures. This is the ideal BEC system to study this transition since Hc2H_{c2} is sufficiently low to be reached with static magnetic fields (as opposed to pulsed fields). The scaling of the magnetization as a function of field and temperature close to Hc2H_{c2} shows excellent agreement with the theoretical predictions. It allows to obtain the quantum critical exponents and confirm the BEC nature of the transition at Hc2H_{c2}.Comment: 4 pages, 1 figure. Accepted for publication in PRB

    An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux

    Full text link
    In the steady Couette flow of a granular gas the sign of the heat flux gradient is governed by the competition between viscous heating and inelastic cooling. We show from the Boltzmann equation for inelastic Maxwell particles that a special class of states exists where the viscous heating and the inelastic cooling exactly compensate each other at every point, resulting in a uniform heat flux. In this state the (reduced) shear rate is enslaved to the coefficient of restitution α\alpha, so that the only free parameter is the (reduced) thermal gradient ϵ\epsilon. It turns out that the reduced moments of order kk are polynomials of degree k2k-2 in ϵ\epsilon, with coefficients that are nonlinear functions of α\alpha. In particular, the rheological properties (k=2k=2) are independent of ϵ\epsilon and coincide exactly with those of the simple shear flow. The heat flux (k=3k=3) is linear in the thermal gradient (generalized Fourier's law), but with an effective thermal conductivity differing from the Navier--Stokes one. In addition, a heat flux component parallel to the flow velocity and normal to the thermal gradient exists. The theoretical predictions are validated by comparison with direct Monte Carlo simulations for the same model.Comment: 16 pages, 4 figures,1 table; v2: minor change

    Is This a Joke? Detecting Humor in Spanish Tweets

    Full text link
    While humor has been historically studied from a psychological, cognitive and linguistic standpoint, its study from a computational perspective is an area yet to be explored in Computational Linguistics. There exist some previous works, but a characterization of humor that allows its automatic recognition and generation is far from being specified. In this work we build a crowdsourced corpus of labeled tweets, annotated according to its humor value, letting the annotators subjectively decide which are humorous. A humor classifier for Spanish tweets is assembled based on supervised learning, reaching a precision of 84% and a recall of 69%.Comment: Preprint version, without referra
    corecore