7,602 research outputs found

    Graphene zigzag ribbons, square lattice models and quantum spin chains

    Full text link
    We present an extended study of finite-width zigzag graphene ribbons (ZGRs) based on a tight-binding model with hard-wall boundary conditions. We provide an exact analytic solution that clarifies the origin of the predicted width dependence on the conductance through junctions of ribbons with different widths. An analysis of the obtained solutions suggests a new description of ZGRs in terms of coupled chains. We pursue these ideas further by introducing a mapping between the ZGR model and the Hamiltonian for N-coupled quantum chains as described in terms of 2N Majorana fermions. The proposed mapping preserves the dependence of ribbon properties on its width thus rendering metallic ribbons for N odd and zero-gap semiconductor ribbons for N even. Furthermore, it reveals a close connection between the low-energy properties of the ZGR model and a continuous family of square lattice model Hamiltonians with similar width-dependent properties that includes the π\pi-flux and the trivial square lattice models. As a further extension, we show that this new description makes it possible to identify various aspects of the physics of graphene ribbons with those predicted by models of quantum spin chains (QSCs)

    JOB BURNOUT AND PERFORMANCE OF STAFF NURSES IN SELECTED HOSPITALS IN METRO MANILA

    Get PDF
    This study was conducted to determine the job burnout and performance of staff nurses in selected tertiary hospitals in Manila using the Oldenburg Burnout Inventory. Results showed that there’s: a high degree of agreement in relation to burnout of the staff-nurses in terms of exhaustion and disengagement; an average level of performance of the staff nurses in terms of task performance, contextual performance, and counter-productive behavior; significant differences between the degrees of agreement in relation to job burnout of the staff-nurses (disengagement and exhaustion) when they are grouped according to nurse-patient ratio and census per area; significant relationships between the degree of agreement in relation to job burnout (disengagement) and overall level of performance of the staff nurses. Researchers pursued this study because some of their colleagues have lost the enjoyment of their job; that they feel that their efforts were being unnoticed; and feel overworked. Through this study, the degree of agreement in relation to job burnout of the staff nurses and their level of performance was determined. This paved a way for the development of new plans and programs to help staff nurses overcome their feelings of burnout, making them more energetic and enthusiastic in performing their job

    Lagrangian Variational Framework for Boundary Value Problems

    Full text link
    A boundary value problem is commonly associated with constraints imposed on a system at its boundary. We advance here an alternative point of view treating the system as interacting "boundary" and "interior" subsystems. This view is implemented through a Lagrangian framework that allows to account for (i) a variety of forces including dissipative acting at the boundary; (ii) a multitude of features of interactions between the boundary and the interior fields when the boundary fields may differ from the boundary limit of the interior fields; (iii) detailed pictures of the energy distribution and its flow; (iv) linear and nonlinear effects. We provide a number of elucidating examples of the structured boundary and its interactions with the system interior. We also show that the proposed approach covers the well known boundary value problems.Comment: 41 pages, 3 figure

    Ferns and lycophytes of Celaque National Park, Honduras

    Get PDF
    A recent survey of the montane cloud forest of Celaque has added 20 new additions to the fern flora of Celaque National Park, Honduras. A list of all the ferns and lycophytes recorded for the park is provided

    Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray

    Get PDF
    The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception

    An infinite family of magnetized Morgan-Morgan relativistic thin disks

    Full text link
    Applying the Horsk\'y-Mitskievitch conjecture to the empty space solutions of Morgan and Morgan due to the gravitational field of a finite disk, we have obtained the corresponding solutions of the Einstein-Maxwell equations. The resulting expressions are simply written in terms of oblate spheroidal coordinates and the solutions represent fields due to magnetized static thin disk of finite extension. Now, although the solutions are not asymptotically flat, the masses of the disks are finite and the energy-momentum tensor agrees with the energy conditions. Furthermore, the magnetic field and the circular velocity show an acceptable physical behavior.Comment: Submitted to IJTP. This paper is a revised and extended version of a paper that was presented at arXiv:1006.203
    corecore