6,759 research outputs found

    Hanbury Brown-Twiss Interferometry for Fractional and Integer Mott Phases

    Full text link
    Hanbury-Brown-Twiss interferometry (HBTI) is used to study integer and fractionally filled Mott Insulator (MI) phases in period-2 optical superlattices. In contrast to the quasimomentum distribution, this second order interferometry pattern exhibits high contrast fringes in the it insulating phases. Our detailed study of HBTI suggests that this interference pattern signals the various superfluid-insulator transitions and therefore can be used as a practical method to determine the phase diagram of the system. We find that in the presence of a confining potential the insulating phases become robust as they exist for a finite range of atom numbers. Furthermore, we show that in the trapped case the HBTI interferogram signals the formation of the MI domains and probes the shell structure of the system.Comment: 13 pages, 15 figure

    Science journalism: the importance of shaping the communication channel between scientists and the general public

    Get PDF
    Não importa o quão útil, complexa ou surpreendente seja uma descoberta relacionada com o cérebro, ela afeta magicamente a opinião pública. Para além do entendimento dos mecanismos neurais estão a cura de doenças neurológicas e psiquiátricas e, ainda mais atraente, o poder de compreender e modificar o comportamento das pessoas. Enquanto os avanços têm sido informados à comunidade científica através de meios tradicionais, o público em geral receber estas notícias através da mídia. Neste trabalho, analisamos diferentes casos paradigmáticos em que estratégias inadequadas de comunicação e suas consequências tiveram um impacto negativo na sociedade. Junto com a apresentação desses casos, aconselhamos sobre a necessidade de incorporar os jornalistas ao círculo de descoberta e comunicação, a fim de garantir a compreensão, pelo público em geral, das descobertas e progresso da neurociênciaNo matter how useful, complex or astonishing a discovery related to the brain is, it impacts magically on public opinion. Beyond the pure understanding of the brain mechanisms are the cure of neurological and psychiatric disorders and, even more attractive, the power to understand and modify people’s behaviour. While breakthroughs have been communicated to the scientific community by traditional means, general public receive these news through the media. In this work we analyse different paradigmatic cases where wrong communicative strategies and their consequences impacted negatively on the society. Along with the presentation of those cases, we advise over the necessity of incorporating journalists to the scientific loop of discovery and communication, in order to guarantee the general public understanding of neuroscience discoveries and progres

    Double Quantum Dots in Carbon Nanotubes

    Full text link
    We study the two-electron eigenspectrum of a carbon-nanotube double quantum dot with spin-orbit coupling. Exact calculation are combined with a simple model to provide an intuitive and accurate description of single-particle and interaction effects. For symmetric dots and weak magnetic fields, the two-electron ground state is antisymmetric in the spin-valley degree of freedom and is not a pure spin-singlet state. When double occupation of one dot is favored by increasing the detuning between the dots, the Coulomb interaction causes strong correlation effects realized by higher orbital-level mixing. Changes in the double-dot configuration affect the relative strength of the electron-electron interactions and can lead to different ground state transitions. In particular, they can favor a ferromagnetic ground state both in spin and valley degrees of freedom. The strong suppression of the energy gap can cause the disappearance of the Pauli blockade in transport experiments and thereby can also limit the stability of spin-qubits in quantum information proposals. Our analysis is generalized to an array of coupled dots which is expected to exhibit rich many-body behavior.Comment: 14 pages, 11 pages and 1 table. Typos in text and Figs.4 and 6 correcte

    An Extension of the Fluctuation Theorem

    Full text link
    Heat fluctuations are studied in a dissipative system with both mechanical and stochastic components for a simple model: a Brownian particle dragged through water by a moving potential. An extended stationary state fluctuation theorem is derived. For infinite time, this reduces to the conventional fluctuation theorem only for small fluctuations; for large fluctuations, it gives a much larger ratio of the probabilities of the particle to absorb rather than supply heat. This persists for finite times and should be observable in experiments similar to a recent one of Wang et al.Comment: 12 pages, 1 eps figure in color (though intelligible in black and white

    Effects of random localizing events on matter waves: formalism and examples

    Full text link
    A formalism is introduced to describe a number of physical processes that may break down the coherence of a matter wave over a characteristic length scale l. In a second-quantized description, an appropriate master equation for a set of bosonic "modes" (such as atoms in a lattice, in a tight-binding approximation) is derived. Two kinds of "localizing processes" are discussed in some detail and shown to lead to master equations of this general form: spontaneous emission (more precisely, light scattering), and modulation by external random potentials. Some of the dynamical consequences of these processes are considered: in particular, it is shown that they generically lead to a damping of the motion of the matter-wave currents, and may also cause a "flattening" of the density distribution of a trapped condensate at rest.Comment: v3; a few corrections, especially in Sections IV and

    Statistical isotropy of the Cosmic Microwave Background

    Get PDF
    The breakdown of statistical homogeneity and isotropy of cosmic perturbations is a generic feature of ultra large scale structure of the cosmos, in particular, of non trivial cosmic topology. The statistical isotropy (SI) of the Cosmic Microwave Background temperature fluctuations (CMB anisotropy) is sensitive to this breakdown on the largest scales comparable to, and even beyond the cosmic horizon. We propose a set of measures, κℓ\kappa_\ell (ℓ=1,2,3,...\ell=1,2,3, ...) which for non-zero values indicate and quantify statistical isotropy violations in a CMB map. We numerically compute the predicted κℓ\kappa_\ell spectra for CMB anisotropy in flat torus universe models. Characteristic signature of different models in the κℓ\kappa_\ell spectrum are noted.Comment: Presented at PASCOS'03, January 3-8, 2003, in TIFR, Mumbai; to be published in a special issue of 'Pramana' (4 pages, 1 figure, style files included

    Modulation of Host Immunity by Human Respiratory Syncytial Virus Virulence Factors: A Synergic Inhibition of Both Innate and Adaptive Immunity

    Get PDF
    Indexación: Web of Science; Scopus.The Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ARTIs) and high rates of hospitalizations in children and in the elderly worldwide. Symptoms of hRSV infection include bronchiolitis and pneumonia. The lung pathology observed during hRSV infection is due in part to an exacerbated host immune response, characterized by immune cell infiltration to the lungs. HRSV is an enveloped virus, a member of the Pneumoviridae family, with a non-segmented genome and negative polarity-single RNA that contains 10 genes encoding for 11 proteins. These include the Fusion protein (F), the Glycoprotein (G), and the Small Hydrophobic (SH) protein, which are located on the virus surface. In addition, the Nucleoprotein (N), Phosphoprotein (P) large polymerase protein (L) part of the RNA-dependent RNA polymerase complex, the M2-1 protein as a transcription elongation factor, the M2-2 protein as a regulator of viral transcription and (M) protein all of which locate inside the virion. Apart from the structural proteins, the hRSV genome encodes for the non-structural 1 and 2 proteins (NS1 and NS2). HRSV has developed different strategies to evade the host immunity by means of the function of some of these proteins that work as virulence factors to improve the infection in the lung tissue. Also, hRSV NS-1 and NS-2 proteins have been shown to inhibit the activation of the type I interferon response. Furthermore, the hRSV nucleoprotein has been shown to inhibit the immunological synapsis between the dendritic cells and T cells during infection, resulting in an inefficient T cell activation. Here, we discuss the hRSV virulence factors and the host immunological features raised during infection with this virus.https://www.frontiersin.org/articles/10.3389/fcimb.2017.00367/ful

    Noise Correlations of Hard-core Bosons: Quantum Coherence and Symmetry Breaking

    Full text link
    Noise correlations, such as those observable in the time of flight images of a released cloud, are calculated for hard-core bosonic (HCB) atoms. We find that the standard mapping of HCB systems onto spin-1/2 XY models fails in application to computation of noise correlations due to the contribution of multiply occupied virtual states in HCB systems. Such states do not exist in spin models. An interesting manifestation of such states is the breaking of particle-hole symmetry in HCB. We use noise correlations to explore quantum coherence of strongly correlated bosons in the fermionized regime with and without external parabolic confinement. Our analysis points to distinctive new experimental signatures of the Mott phase.Comment: 17 pages, 6 figures. This is a detailed revised version of quant-ph/0507153. It has been submitted to Journal of Physics B: the special edition for the Cortona BEC worksho

    Simple model with facilitated dynamics for granular compaction

    Get PDF
    A simple lattice model is used to study compaction in granular media. As in real experiments, we consider a series of taps separated by large enough waiting times. The relaxation of the density exhibits the characteristic inverse logarithmic law. Moreover, we have been able to identify analytically the relevant time scale, leading to a relaxation law independent of the specific values of the parameters. Also, an expression for the asymptotic density reached in the compaction process has been derived. The theoretical predictions agree fairly well with the results from the Monte Carlo simulation.Comment: 15 pages, 4 figures, REVTeX file; no changes except for single-spacing to save paper (previous version 22 pages

    Non-renormalization of next-to-extremal correlators in N=4 SYM and the AdS/CFT correspondence

    Get PDF
    We show that next-to-extremal correlators of chiral primary operators in N=4 SYM theory do not receive quantum corrections to first order in perturbation theory. Furthermore we consider next-to-extremal correlators within AdS supergravity. Here the exchange diagrams contributing to these correlators yield results of the same free-field form as obtained within field theory. This suggests that quantum corrections vanish at strong coupling as well.Comment: 21 pages, LaTex, 9 eps figures, typos corrected and references adde
    • …
    corecore