80 research outputs found

    Multisystem imaging manifestations of covid-19, part 1: Viral pathogenesis and pulmonary and vascular system complications

    Get PDF
    © RSNA, 2020. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in coronavirus disease 2019 (COVID-19), which was declared an official pandemic by the World Health Organization on March 11, 2020. The infection has been reported in most countries around the world. As of August 2020, there have been over 21 million cases of COVID-19 reported worldwide, with over 800 000 COVID-19–associated deaths. It has become appar-ent that although COVID-19 predominantly affects the respiratory system, many other organ systems can also be involved. Imaging plays an essential role in the diagnosis of all manifestations of the disease, as well as its related complications, and proper utilization and interpretation of imaging examinations is crucial. With the growing global COVID-19 outbreak, a comprehensive understanding of the diagnostic imaging hallmarks, imaging features, multi-systemic involvement, and evolution of imaging findings is essential for effective patient management and treatment. To date, only a few articles have been published that comprehensively describe the multisystemic imaging manifestations of COVID-19. The authors provide an inclusive system-by-system image-based review of this life-threatening and rapidly spreading infection. In part 1 of this article, the authors discuss general aspects of the disease, with an emphasis on virology, the pathophysiology of the virus, and clinical presentation of the disease. The key imaging features of the varied pathologic manifestations of this infection that involve the pulmonary and peripheral and central vascular systems are also described. Part 2 will focus on key imaging features of COVID-19 that involve the cardiac, neurologic, abdominal, dermatologic and ocular, and musculoskeletal systems, as well as pediatric and pregnancy-related manifestations of the virus. Vascular complications pertinent to each system will be also be discussed in part 2

    Multisystem Imaging Manifestations of COVID-19, Part 2: From Cardiac Complications to Pediatric Manifestations.

    Get PDF
    Infection with severe acute respiratory syndrome coronavirus 2 results in coronavirus disease 2019 (COVID-19), which was declared an official pandemic by the World Health Organization on March 11, 2020. COVID-19 has been reported in most countries, and as of August 15, 2020, there have been over 21 million cases of COVID-19 reported worldwide, with over 800 000 COVID-19-associated deaths. Although COVID-19 predominantly affects the respiratory system, it has become apparent that many other organ systems can also be involved. Imaging plays an essential role in the diagnosis of all manifestations of the disease and its related complications, and proper utilization and interpretation of imaging examinations is crucial. A comprehensive understanding of the diagnostic imaging hallmarks, imaging features, multisystem involvement, and evolution of imaging findings is essential for effective patient management and treatment. In part 1 of this article, the authors described the viral pathogenesis, diagnostic imaging hallmarks, and manifestations of the pulmonary and peripheral and central vascular systems of COVID-19. In part 2 of this article, the authors focus on the key imaging features of the varied pathologic manifestations of COVID-19, involving the cardiac, neurologic, abdominal, dermatologic and ocular, and musculoskeletal systems, as well as the pediatric and pregnancy-related manifestations of the virus. Online supplemental material is available for this article. ©RSNA, 2020

    The Baksan gallium solar neutrino experiment

    Get PDF
    A radiochemical 71Ga-71Ge experiment to determine the integral flux of neutrinos from the sun has been constructed at the Baksan Neutrino Observatory in the USSR. Measurements have begun with 30 tonnes of gallium. An additional 30 tonnes of gallium are being installed so as to perform the full experiment with a 60-tonne target. The motivation, experiment procedures, and present status of this experiment are described. © 1990

    First results from the Soviet-American gallium experiment

    Get PDF
    The Soviet-American Gallium Experiment is the first experiment able to measure the dominant flux of low energy p-p solar neutrinos. Four extractions made during January to May 1990 from 30 tons of gallium have been counted and indicate that the flux is consistent with 0 SNU and is less than 72 SNU (68% CL) and less than 138 SNU (95% CL). This is to be compared with the flux of 132 SNU predicted by the Standard Solar Model. © 1991

    From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications

    Get PDF
    This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities

    Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes.

    Get PDF
    Gold is the most widely used electrode material for bioelectronic applications due to its high electrical conductivity, good chemical stability and proven biocompatibility. However, it adheres only weakly to widely used substrate materials such as glass and silicon oxide, typically requiring the use of a thin layer of chromium between the substrate and the metal to achieve adequate adhesion. Unfortunately, this approach can reduce biocompatibility relative to pure gold films due to the risk of the underlying layer of chromium becoming exposed. Here we report on an alternative adhesion layer for gold and other metals formed from a thin layer of the negative-tone photoresist SU-8, which we find to be significantly less cytotoxic than chromium, being broadly comparable to bare glass in terms of its biocompatibility. Various treatment protocols for SU-8 were investigated, with a view to attaining high transparency and good mechanical and biochemical stability. Thermal annealing to induce partial cross-linking of the SU-8 film prior to gold deposition, with further annealing after deposition to complete cross-linking, was found to yield the best electrode properties. The optimized glass/SU8-Au electrodes were highly transparent, resilient to delamination, stable in biological culture medium, and exhibited similar biocompatibility to glass

    The radiologist’s guide to duplex ultrasound assessment of chronic mesenteric ischemia

    No full text
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. Objective: This article reviews the relevant anatomy and physiology of the mesenteric vasculature, familiarizes the radiologist with the accepted diagnostic criteria for mesenteric artery stenosis and its role in the diagnosis of chronic mesenteric ischemia, describes Doppler imaging techniques, and provides protocols for the assessment and surveillance of the mesenteric vasculature before and after revascularization. It also discusses expected changes following revascularization and reviews common post-procedural complications. Results: Duplex sonography plays an important role in the diagnosis and management of chronic mesenteric ischemia (CMI). Establishing a successful diagnosis is dependent upon knowledge of mesenteric arterial anatomy and physiology as well as sufficient expertise in image optimization and scanning techniques. Although there has been a trend toward utilization of other noninvasive [computed tomographic angiography (CTA), magnetic resonance angiography (MRA), and invasive (digital subtraction angiography (DSA)] imaging modalities for assessment of the mesenteric vasculature, a new era of “imaging wisely” raises legitimate concerns about the effects of ionizing radiation as well as potential effects of CT and MR contrast agents. These concerns are obviated by the use of ultrasound, and recently developed techniques, such as contrast-enhanced ultrasound and vascular applications focused on the evaluation of slow flow, have revealed the vast potential of vascular ultrasound in the evaluation of chronic mesenteric ischemia. Conclusion: Duplex sonography is a cost-effective and powerful tool that can be utilized for the accurate assessment of mesenteric vascular pathology, specifically mesenteric arterial stenosis, and for the evaluation of mesenteric arterial system post revascularization
    corecore