448 research outputs found

    Preface: In focus issue on blood-biomaterial interactions (Editorial)

    Get PDF

    Towards Better Cell Membrane Mimics: Cholesterol-Containing Supported Lipid Bilayers on TiO2

    Get PDF
    Podeu consultar la versió en castellà a: http://hdl.handle.net/11703/116989Podeu consultar la versió en francès a: http://hdl.handle.net/11703/11699

    The new faces of biointerfaces?

    Get PDF

    Rupture Pathway of Phosphatidylcholine Liposomes on Silicon Dioxide

    Get PDF
    We have investigated the pathway by which unilamellar POPC liposomes upon adsorption undergo rupture and form a supported lipid bilayer (SLB) on a SiO2 surface. Biotinylated lipids were selectively incorporated in the outer monolayer of POPC liposomes to create liposomes with asymmetric lipid compositions in the outer and inner leaflets. The specific binding of neutravidin and anti-biotin to SLBs formed by liposome fusion, prior to and after equilibrated flip-flop between the upper and lower monolayers in the SLB, were then investigated. It was concluded that the lipids in the outer monolayer of the vesicle predominantly end up on the SLB side facing the SiO2 substrate, as demonstrated by having maximum 30–40% of lipids in the liposome outer monolayer orienting towards the bulk after forming the SLB

    High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, Experimental, Characterization

    Full text link
    © 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Miniaturized, high-throughput, cost-effective sensing devices are needed to advance lab-on-a-chip technologies for healthcare, security, environmental monitoring, food safety, and research applications. Quartz crystal microbalance with dissipation (QCMD) is a promising technology for the design of such sensing devices, but its applications have been limited, until now, by low throughput and significant costs. In this work, we present the design and characterization of 24-element monolithic QCMD arrays for high-throughput and low-volume sensing applications in liquid. Physical properties such as geometry and roughness, and electrical properties such as resonance frequency, quality factor, spurious mode suppression, and interactions between array elements (crosstalk), are investigated in detail. In particular, we show that the scattering parameter, S 21 , commonly measured experimentally to investigate crosstalk, contains contributions from the parasitic grounding effects associated with the acquisition circuitry. Finite element method simulations do not take grounding effects into account explicitly. However, these effects can be effectively modelled with appropriate equivalent circuit models, providing clear physical interpretation of the different contributions. We show that our array design avoids unwanted interactions between elements and discuss in detail aspects of measuring these interactions that are often-overlooked.The authors would also like to thank Jorge Martínez from the Laboratory of High Frequency Circuits (LCAF) of the Universitat Politècnica de València (UPV) for assistance with profilometry, and Manuel Planes, José Luis Moya, Mercedes Tabernero, Alicia Nuez, and Joaquin Fayos from the Electron Microscopy Services of the UPV for helping with the AFM, and SEM measurements. M. Calero is the recipient of the doctoral fellowship BES-2017-080246 from the Spanish Ministry of Economy, Industry and Competitiveness, Madrid, Spain.Fernández Díaz, R.; Calero-Alcarria, MDS.; Reviakine, I.; García, JV.; Rocha-Gaso, MI.; Arnau Vives, A.; Jiménez Jiménez, Y. (2021). High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, Experimental, Characterization. IEEE Sensors Journal. 21(1):284-295. https://doi.org/10.1109/JSEN.2020.3015011S28429521

    Introduction to imaging methods in photosynthesis

    Full text link

    A Multichannel Microfluidic Sensing Cartridge for Bioanalytical Applications of Monolithic Quartz Crystal Microbalance

    Full text link
    [EN] Integrating acoustic wave sensors into lab-on-a-chip (LoC) devices is a well-known challenge. We address this challenge by designing a microfluidic device housing a monolithic array of 24 high-fundamental frequency quartz crystal microbalance with dissipation (HFF-QCMD) sensors. The device features six 6-µL channels of four sensors each for low-volume parallel measurements, a sealing mechanism that provides appropriate pressure control while assuring liquid confinement and maintaining good stability, and provides a mechanical, electrical, and thermal interface with the characterization electronics. We validate the device by measuring the response of the HFF-QCMD sensors to the air-to-liquid transition, for which the robust Kanazawa¿Gordon¿Mason theory exists, and then by studying the adsorption of model bioanalytes (neutravidin and biotinylated albumin). With these experiments, we show how the effects of the protein¿surface interactions propagate within adsorbed protein multilayers, offering essentially new insight into the design of affinity-based bioanalytical sensorsThis work was supported in part by Ministerio de Economía, Industria y Competitividad de España Agencia Estatal de Investigación with FEDER (Fondo Europeo de Desarrollo Regional) funds under Project AGL2016-77702-R and in part by the European Commission Horizon 2020 Programme, Capturing non-Amplified Tumor Circulating DA with Ultrasound Hidrodynamics, under Grant H2020-FETOPEN-2016-2017/737212-CATCH-U-DNA. M. Calero is the recipient of the doctoral fellowship BES-2017-080246 from the Ministerio de Economía, Industria y Competitividad de España.Calero-Alcarria, MDS.; Fernández Díaz, R.; Garcia Molla, P.; García Narbón, JV.; García, M.; Gamero-Sandemetrio, E.; Reviakine, I.... (2020). A Multichannel Microfluidic Sensing Cartridge for Bioanalytical Applications of Monolithic Quartz Crystal Microbalance. Biosensors. 10(12):1-13. https://doi.org/10.3390/bios10120189S1131012Soper, S. A., Brown, K., Ellington, A., Frazier, B., Garcia-Manero, G., Gau, V., … Wilson, D. (2006). Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosensors and Bioelectronics, 21(10), 1932-1942. doi:10.1016/j.bios.2006.01.006Lafleur, J. P., Jönsson, A., Senkbeil, S., & Kutter, J. P. (2016). Recent advances in lab-on-a-chip for biosensing applications. Biosensors and Bioelectronics, 76, 213-233. doi:10.1016/j.bios.2015.08.003Nasseri, B., Soleimani, N., Rabiee, N., Kalbasi, A., Karimi, M., & Hamblin, M. R. (2018). Point-of-care microfluidic devices for pathogen detection. Biosensors and Bioelectronics, 117, 112-128. doi:10.1016/j.bios.2018.05.050Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937Reviakine, I., Johannsmann, D., & Richter, R. P. (2011). Hearing What You Cannot See and Visualizing What You Hear: Interpreting Quartz Crystal Microbalance Data from Solvated Interfaces. Analytical Chemistry, 83(23), 8838-8848. doi:10.1021/ac201778hFernandez, R., Calero, M., Reiviakine, I., Garcia, J. V., Rocha-Gaso, M. I., Arnau, A., & Jimenez, Y. (2020). High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, Experimental Characterization. IEEE Sensors Journal, 1-1. doi:10.1109/jsen.2020.3015011Tuantranont, A., Wisitsora-at, A., Sritongkham, P., & Jaruwongrungsee, K. (2011). A review of monolithic multichannel quartz crystal microbalance: A review. Analytica Chimica Acta, 687(2), 114-128. doi:10.1016/j.aca.2010.12.022Kao, P., Allara, D., & Tadigadapa, S. (2009). Fabrication and performance characteristics of high-frequency micromachined bulk acoustic wave quartz resonator arrays. Measurement Science and Technology, 20(12), 124007. doi:10.1088/0957-0233/20/12/124007Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., & Büttgenbach, S. (2001). Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sensors and Actuators B: Chemical, 76(1-3), 47-57. doi:10.1016/s0925-4005(01)00567-6Fernández, R., García, P., García, M., García, J., Jiménez, Y., & Arnau, A. (2017). Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications. Sensors, 17(9), 2057. doi:10.3390/s17092057March, C., García, J. V., Sánchez, Á., Arnau, A., Jiménez, Y., García, P., … Montoya, Á. (2015). High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors. Biosensors and Bioelectronics, 65, 1-8. doi:10.1016/j.bios.2014.10.001Cervera-Chiner, L., Juan-Borrás, M., March, C., Arnau, A., Escriche, I., Montoya, Á., & Jiménez, Y. (2018). High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) immunosensor for pesticide detection in honey. Food Control, 92, 1-6. doi:10.1016/j.foodcont.2018.04.026Cervera‐Chiner, L., March, C., Arnau, A., Jiménez, Y., & Montoya, Á. (2020). Detection of DDT and carbaryl pesticides in honey by means of immunosensors based on high fundamental frequency quartz crystal microbalance (HFF‐QCM). Journal of the Science of Food and Agriculture, 100(6), 2468-2472. doi:10.1002/jsfa.10267Montoya, A., March, C., Montagut, Y., Moreno, M., Manclus, J., Arnau, A., … Torres, R. (2017). A High Fundamental Frequency (HFF)-based QCM Immunosensor for Tuberculosis Detection. Current Topics in Medicinal Chemistry, 17(14), 1623-1630. doi:10.2174/1568026617666161104105210Milioni, D., Mateos-Gil, P., Papadakis, G., Tsortos, A., Sarlidou, O., & Gizeli, E. (2020). Acoustic Methodology for Selecting Highly Dissipative Probes for Ultrasensitive DNA Detection. Analytical Chemistry, 92(12), 8186-8193. doi:10.1021/acs.analchem.0c00366Papadakis, G., Palladino, P., Chronaki, D., Tsortos, A., & Gizeli, E. (2017). Sample-to-answer acoustic detection of DNA in complex samples. Chemical Communications, 53(57), 8058-8061. doi:10.1039/c6cc10175ePapadakis, G., Murasova, P., Hamiot, A., Tsougeni, K., Kaprou, G., Eck, M., … Gizeli, E. (2018). Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples. Biosensors and Bioelectronics, 111, 52-58. doi:10.1016/j.bios.2018.03.056El Fissi, L., Fernández, R., García, P., Calero, M., García, J. V., Jiménez, Y., … Francis, L. A. (2019). OSTEMER polymer as a rapid packaging of electronics and microfluidic system on PCB. Sensors and Actuators A: Physical, 285, 511-518. doi:10.1016/j.sna.2018.11.050Papadakis, G., Friedt, J. M., Eck, M., Rabus, D., Jobst, G., & Gizeli, E. (2017). Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics. Biomedical Microdevices, 19(3). doi:10.1007/s10544-017-0159-2Jaeblon, T. (2010). Polymethylmethacrylate: Properties and Contemporary Uses in Orthopaedics. American Academy of Orthopaedic Surgeon, 18(5), 297-305. doi:10.5435/00124635-201005000-00006Kanazawa, K. K., & Gordon, J. G. (1985). Frequency of a quartz microbalance in contact with liquid. Analytical Chemistry, 57(8), 1770-1771. doi:10.1021/ac00285a062Daikhin, L., & Michael Urbakh, and. (1997). Influence of surface roughness on the quartz crystal microbalance response in a solution New configuration for QCM studies. Faraday Discussions, 107, 27-38. doi:10.1039/a703124fMartin, S. J., Granstaff, V. E., & Frye, G. C. (1991). Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Analytical Chemistry, 63(20), 2272-2281. doi:10.1021/ac00020a015Wilchek, M., & Bayer, E. A. (1988). The avidin-biotin complex in bioanalytical applications. Analytical Biochemistry, 171(1), 1-32. doi:10.1016/0003-2697(88)90120-0Diamandis, E. P., & Christopoulos, T. K. (1991). The biotin-(strept)avidin system: principles and applications in biotechnology. Clinical Chemistry, 37(5), 625-636. doi:10.1093/clinchem/37.5.625Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera?A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605-1612. doi:10.1002/jcc.20084Wolny, P. M., Spatz, J. P., & Richter, R. P. (2010). On the Adsorption Behavior of Biotin-Binding Proteins on Gold and Silica. Langmuir, 26(2), 1029-1034. doi:10.1021/la902226bMarttila, A. T., Laitinen, O. H., Airenne, K. J., Kulik, T., Bayer, E. A., Wilchek, M., & Kulomaa, M. S. (2000). Recombinant NeutraLite Avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Letters, 467(1), 31-36. doi:10.1016/s0014-5793(00)01119-4KIM, N. H., BAEK, T. J., PARK, H. G., & SEONG, G. H. (2007). Highly Sensitive Biomolecule Detection on a Quartz Crystal Microbalance Using Gold Nanoparticles as Signal Amplification Probes. Analytical Sciences, 23(2), 177-181. doi:10.2116/analsci.23.177Ogi, H., Naga, H., Fukunishi, Y., Hirao, M., & Nishiyama, M. (2009). 170-MHz Electrodeless Quartz Crystal Microbalance Biosensor: Capability and Limitation of Higher Frequency Measurement. Analytical Chemistry, 81(19), 8068-8073. doi:10.1021/ac901267bSagmeister, B. P., Graz, I. M., Schwödiauer, R., Gruber, H., & Bauer, S. (2009). User-friendly, miniature biosensor flow cell for fragile high fundamental frequency quartz crystal resonators. Biosensors and Bioelectronics, 24(8), 2643-2648. doi:10.1016/j.bios.2009.01.023Uttenthaler, E., Schräml, M., Mandel, J., & Drost, S. (2001). Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosensors and Bioelectronics, 16(9-12), 735-743. doi:10.1016/s0956-5663(01)00220-2Squires, T. M., Messinger, R. J., & Manalis, S. R. (2008). Making it stick: convection, reaction and diffusion in surface-based biosensors. Nature Biotechnology, 26(4), 417-426. doi:10.1038/nbt138

    Time-dependent release of growth factors from implant surfaces treated with plasma rich in growth factors

    Get PDF
    Abstract: Plasma rich in growth factors (PRGFs) technology is an autologous platelet-rich plasma approach that provides a pool of growth factors and cytokines that have been shown to increase tissue regeneration and accelerate dental implant osseointegration. In this framework, the spatiotemporal release of growth factors and the establishment of a provisional fibrin matrix are likely to be key aspects governing the stimulation of the early phases of tissue regeneration around implants. We investigated the kinetics of growth factor release at implant surfaces functionalized either with PRGFs or platelet-poor plasma and correlated the results obtained with the morphology of the resulting interfaces. Our main finding is that activation and clot formation favors longer residence times of the growth factors at the interfaces studied, probably due to their retention in the adsorbed fibrin matrix. The concentration of the platelet-derived growth factors above the interfaces becomes negligible after 2-4 days and is significantly higher in the case of activated interfaces than in the case of nonactivated ones, whereas that of the plasmatic hepatocyte growth factor is independent of platelet concentration and activation, and remains significant for up to 9 days. Platelet-rich plasma preparations should be activated to permit growth factor release and thereby facilitate implant surface osseointegration. V C 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 00A:000-000, 2012
    corecore