3 research outputs found

    Thermal resistance of proteolytic enzymes produced by psychrotrophic bacteria isolated from buffalo milk

    Get PDF
    Background and Objective: Psychrotrophic bacteria produce extracellular proteases, resulting in deterioration and reduced shelf life of dairy products. In this study, 21 species of psychotropic bacteria isolated from buffalo milk were selected and the thermal resistance of the proteases produced by these bacteria was evaluated. Materials and Methods: The isolates were tested to evaluate proteolytic activity of buffalo milk agar. The cell-free supernatants from the growing of isolates were obtained for the quantification of enzymatic activity under different pH values (5.5, 7.0 and 8.0). Thermal resistance and the clotting ability of proteolytic enzymes in buffalo and bovine milk substrates were also evaluated. One-way ANOVA test with a critical probability of p1 U mLG1 under at least one of the pH tested. Five isolates produced cell-free supernatants resistant to pasteurization (63.5EC/30 min), following which they were able to coagulate buffalo and bovine milk. The crude enzyme of P. fluorescens PL5.4 showed the greatest enzymatic activity within a wide pH range (4-10) and at an optimum temperature of 40EC. The cell-free supernatant of this isolate resisted to tests with detergents and organic solvents. However, it was not possible to identify the type of protease. Conclusion: The results of this study showed the negative impact of the presence of psychrotrophic bacteria producing proteolytic enzymes in buffalo milk. This is because the enzymes studied caused changes in milk samples, revealing a negative impact on the production of derived products. This is significant, since the buffalo milk produced in Brazil is directed to the production of dairy products

    Microbial Contamination in Milk Quality and Health Risk of the Consumers of Raw Milk and Dairy Products

    Get PDF
    d market. Milk quality and food safety concern in the consumers’ health and nutrition in public health surveillance prevent food-borne diseases, food poisoning, and zoonosis risk by raw milk and fresh dairy products. The aim of this work is focused on milk microbial contamination and its impacts on milk production and dairy industry with their implications in milk product quality, food-borne diseases from raw milk, and unpasteurized milk by food-borne pathogen microbial contamination and milk and dairy product spoilage. The microbial milk contamination source comes from herd hygiene and health status, mastitis prevalence, production environment, and milking parlor and milk conserving practices in dairy farm. Moreover, these facts are implicated in milk quality and milk spoilage and unsafe dairy products. The milk production system and the dairy plant operations keep track in pasteurized milk and fresh dairy products reviewing the traceability in field situational diagnosis report

    Thermal resistance of proteolytic enzymes produced by psychrotrophic bacteria isolated from buffalo milk

    Get PDF
    Background and Objective: Psychrotrophic bacteria produce extracellular proteases, resulting in deterioration and reduced shelf life of dairy products. In this study, 21 species of psychotropic bacteria isolated from buffalo milk were selected and the thermal resistance of the proteases produced by these bacteria was evaluated. Materials and Methods: The isolates were tested to evaluate proteolytic activity of buffalo milk agar. The cell-free supernatants from the growing of isolates were obtained for the quantification of enzymatic activity under different pH values (5.5, 7.0 and 8.0). Thermal resistance and the clotting ability of proteolytic enzymes in buffalo and bovine milk substrates were also evaluated. One-way ANOVA test with a critical probability of p1 U mLG1 under at least one of the pH tested. Five isolates produced cell-free supernatants resistant to pasteurization (63.5EC/30 min), following which they were able to coagulate buffalo and bovine milk. The crude enzyme of P. fluorescens PL5.4 showed the greatest enzymatic activity within a wide pH range (4-10) and at an optimum temperature of 40EC. The cell-free supernatant of this isolate resisted to tests with detergents and organic solvents. However, it was not possible to identify the type of protease. Conclusion: The results of this study showed the negative impact of the presence of psychrotrophic bacteria producing proteolytic enzymes in buffalo milk. This is because the enzymes studied caused changes in milk samples, revealing a negative impact on the production of derived products. This is significant, since the buffalo milk produced in Brazil is directed to the production of dairy products
    corecore