25 research outputs found
Phylogeny and antiquity of M macrohaplogroup inferred from complete mt DNA sequence of Indian specific lineages
BACKGROUND: Analysis of human complete mitochondrial DNA sequences has largely contributed to resolve phylogenies and antiquity of different lineages belonging to the majorhaplogroups L, N and M (East-Asian lineages). In the absence of whole mtDNA sequence information of M lineages reported in India that exhibits highest diversity within the sub-continent, the present study was undertaken to provide a detailed analysis of this macrohaplogroup to precisely characterize and unravel the intricate phylogeny of the lineages and to establish the antiquity of M lineages in India. RESULTS: The phylogenetic tree constructed from sequencing information of twenty-four whole mtDNA genome revealed novel substitutions in the previously defined M2a and M6 lineages. The most striking feature of this phylogenetic tree is the recognition of two new lineages, M30 and M31, distinguished by transitions at 12007 and 5319, respectively. M30 comprises of M18 and identifies a potential new sub-lineage possessing substitution at 16223 and 16300. It further branches into M30a sub-lineage, defined by 15431 and 195A substitution. The age of M30 lineage was estimated at 33,042 YBP, indicating a more recent expansion time than M2 (49,686 YBP). The M31 branch encompasses the M6 lineage along with the previously defined M3 and M4 lineages. Contradictory to earlier reports, the M5 lineage does not always include a 12477 substitution, and is more appropriately defined by a transversion at 10986A. The phylogenetic tree also identifies a potential new lineage in the M* branch with HVSI sequence as 16223,16325. Substitutions in M25 were in concordance with previous reports. CONCLUSION: This study describes five new basal mutations and recognizes two new lineages, M30 and M31 that substantially contribute to the present understanding of macrohaplogroup M. These two newly erected lineages include the previously independent lineages M18 and M6 as sub-lineages within them, respectively, suggesting that most mt DNA genomes might arise as limited offshoots of M trunk. Furthermore, this study supports the non existence of lineages such as M3 and M4 that are solely defined on the basis of fast mutating control region motifs and hence, establishes the importance of coding region markers for an accurate understanding of the phylogeny. The deep roots of M phylogeny clearly establish the antiquity of Indian lineages, especially M2, as compared to Ethiopian M1 lineage and hence, support an Asian origin of M majorhaplogroup
Functional Effects of the TMEM43 Ser358Leu Mutation in the Pathogenesis of Arrhythmogenic Right Ventricular Cardiomyopathy
Background: The Ser358Leu mutation in TMEM43, encoding an inner nuclear membrane protein, has been implicated in arrhythmogenic right ventricular cardiomyopathy (ARVC). The pathogenetic mechanisms of this mutation are poorly understood. Methods: To determine the frequency of TMEM43 mutations as a cause of ARVC, we screened 11 ARVC families for mutations in TMEM43 and five desmosomal genes previously implicated in the disease. Functional studies were performed in COS-7 cells transfected with wildtype, mutant, and 1:2 wildtype:mutant TMEM43 to determine the effect of the Ser358Leu mutation on the stability and cellular localization of TMEM43 and other nuclear envelope and desmosomal proteins, assessed by solubility assays and immunofluorescence imaging. mRNA expression was assessed of genes potentially affected by dysfunction of the nuclear lamina. Results: Three novel mutations in previously documented desmosomal genes, but no mutations in TMEM43, were identified. COS-7 cells transfected with mutant TMEM43 exhibited no change in desmosomal stability. Stability and nuclear membrane localization of mutant TMEM43 and of lamin B and emerin were normal. Mutant TMEM43 did not alter the expression of genes located on chromosome 13, previously implicated in nuclear envelope protein mutations leading to skeletal muscular dystrophies. Conclusions: Mutant TMEM43 exhibits normal cellular localization and does not disrupt integrity and localization of other nuclear envelope and desmosomal proteins. The pathogenetic role of TMEM43 mutations in ARVC remains uncertain
Early Treatment with Fumagillin, an Inhibitor of Methionine Aminopeptidase-2, Prevents Pulmonary Hypertension in Monocrotaline-Injured Rats
Pulmonary Hypertension (PH) is a pathophysiologic condition characterized by hypoxemia and right ventricular strain. Proliferation of fibroblasts, smooth muscle cells, and endothelial cells is central to the pathology of PH in animal models and in humans. Methionine aminopeptidase-2 (MetAP2) regulates proliferation in a variety of cell types including endothelial cells, smooth muscle cells, and fibroblasts. MetAP2 is inhibited irreversibly by the angiogenesis inhibitor fumagillin. We have previously found that inhibition of MetAP2 with fumagillin in bleomycin-injured mice decreased pulmonary fibrosis by selectively decreasing the proliferation of lung myofibroblasts. In this study, we investigated the role of fumagillin as a potential therapy in experimental PH. In vivo, treatment of rats with fumagillin early after monocrotaline injury prevented PH and right ventricular remodeling by decreasing the thickness of the medial layer of the pulmonary arteries. Treatment with fumagillin beginning two weeks after monocrotaline injury did not prevent PH but was associated with decreased right ventricular mass and decreased cardiomyocyte hypertrophy, suggesting a direct effect of fumagillin on right ventricular remodeling. Incubation of rat pulmonary artery smooth muscle cells (RPASMC) with fumagillin and MetAP2-targeting siRNA inhibited proliferation of RPASMC in vitro. Platelet-derived growth factor, a growth factor that is important in the pathogenesis of PH and stimulates proliferation of fibroblasts and smooth muscle cells, strongly increased expression of MetP2. By immunohistochemistry, we found that MetAP2 was expressed in the lesions of human pulmonary arterial hypertension. We propose that fumagillin may be an effective adjunctive therapy for treating PH in patients
Expert Panel Curation of 113 Primary Mitochondrial Disease Genes for the Leigh Syndrome Spectrum
OBJECTIVE: Primary mitochondrial diseases (PMDs) are heterogeneous disorders caused by inherited mitochondrial dysfunction. Classically defined neuropathologically as subacute necrotizing encephalomyelopathy, Leigh syndrome spectrum (LSS) is the most frequent manifestation of PMD in children, but may also present in adults. A major challenge for accurate diagnosis of LSS in the genomic medicine era is establishing gene-disease relationships (GDRs) for this syndrome with >100 monogenic causes across both nuclear and mitochondrial genomes. METHODS: The Clinical Genome Resource (ClinGen) Mitochondrial Disease Gene Curation Expert Panel (GCEP), comprising 40 international PMD experts, met monthly for 4 years to review GDRs for LSS. The GCEP standardized gene curation for LSS by refining the phenotypic definition, modifying the ClinGen Gene-Disease Clinical Validity Curation Framework to improve interpretation for LSS, and establishing a scoring rubric for LSS. RESULTS: The GDR with LSS across the nuclear and mitochondrial genomes was classified as definitive for 31/114 gene-disease relationships curated (27%); moderate for 38 (33%); limited for 43 (38%); and 2 as disputed (2%). Ninety genes were associated with autosomal recessive inheritance, 16 were maternally inherited, 5 autosomal dominant, and 3 X-linked. INTERPRETATION: GDRs for LSS were established for genes across both nuclear and mitochondrial genomes. Establishing these GDRs will allow accurate variant interpretation, expedite genetic diagnosis of LSS, and facilitate precision medicine, multi-system organ surveillance, recurrence risk counselling, reproductive choice, natural history studies and eligibility for interventional clinical trials. This article is protected by copyright. All rights reserved
Genetic structure of four socio-culturally diversified caste populations of southwest India and their affinity with related Indian and global groups
<p>Abstract</p> <p>Background</p> <p>A large number of microsatellites have been extensively used to comprehend the genetic diversity of different global groups. This paper entails polymorphism at 15 STR in four predominant and endogamous populations representing Karnataka, located on the southwest coast of India. The populations residing in this region are believed to have received gene flow from south Indian populations and world migrants, hence, we carried out a detailed study on populations inhabiting this region to understand their genetic structure, diversity related to geography and linguistic affiliation and relatedness to other Indian and global migrant populations.</p> <p>Results</p> <p>Various statistical analyses were performed on the microsatellite data to accomplish the objectives of the paper. The heretozygosity was moderately high and similar across the loci, with low average G<sub>ST </sub>value. Iyengar and Lyngayat were placed above the regression line in the R-matrix analysis as opposed to the Gowda and Muslim. AMOVA indicated that majority of variation was confined to individuals within a population, with geographic grouping demonstrating lesser genetic differentiation as compared to linguistic clustering. D<sub>A </sub>distances show the genetic affinity among the southern populations, with Iyengar, Lyngayat and Vanniyar displaying some affinity with northern Brahmins and global migrant groups from East Asia and Europe.</p> <p>Conclusion</p> <p>The microsatellite study divulges a common ancestry for the four diverse populations of Karnataka, with the overall genetic differentiation among them being largely confined to intra-population variation. The practice of consanguineous marriages might have attributed to the relatively lower gene flow displayed by Gowda and Muslim as compared to Iyengar and Lyngayat. The various statistical analyses strongly suggest that the studied populations could not be differentiated on the basis of caste or spatial location, although, linguistic affinity was reflected among the southern populations, distinguishing them from the northern groups. Our study also indicates a heterogeneous origin for Lyngayat and Iyengar owing to their genetic proximity with southern populations and northern Brahmins. The high-ranking communities, in particular, Iyengar, Lyngayat, Vanniyar and northern Brahmins might have experienced genetic admixture from East Asian and European ethnic groups.</p
Synthesis and Antimicrobial Activity of Some Aldehyde Derivatives of 3-Acetylchromen-2-one
Some new 3-(substituted)-chromen-2-one have been synthesized by condensation of 3-acetylchromen-2-one with various aromatic aldehyde in presence of ethanol and alkali. The synthesized compounds were identified by spectral data and screened for their antibacterial activity against B. pumilis, B. substilis and E. coli and antifungal activity against A. niger and Candida albicans. Among the synthesized compounds, some compounds of aryl chromen, which are having electron releasing substituent such as methoxy and hydroxyl at various positions, showed moderate to considerable antibacterial and antifungal activities
Functional effects of the <it>TMEM43 </it>Ser358Leu mutation in the pathogenesis of arrhythmogenic right ventricular cardiomyopathy
Abstract Background The Ser358Leu mutation in TMEM43, encoding an inner nuclear membrane protein, has been implicated in arrhythmogenic right ventricular cardiomyopathy (ARVC). The pathogenetic mechanisms of this mutation are poorly understood. Methods To determine the frequency of TMEM43 mutations as a cause of ARVC, we screened 11 ARVC families for mutations in TMEM43 and five desmosomal genes previously implicated in the disease. Functional studies were performed in COS-7 cells transfected with wildtype, mutant, and 1:2 wildtype:mutant TMEM43 to determine the effect of the Ser358Leu mutation on the stability and cellular localization of TMEM43 and other nuclear envelope and desmosomal proteins, assessed by solubility assays and immunofluorescence imaging. mRNA expression was assessed of genes potentially affected by dysfunction of the nuclear lamina. Results Three novel mutations in previously documented desmosomal genes, but no mutations in TMEM43, were identified. COS-7 cells transfected with mutant TMEM43 exhibited no change in desmosomal stability. Stability and nuclear membrane localization of mutant TMEM43 and of lamin B and emerin were normal. Mutant TMEM43 did not alter the expression of genes located on chromosome 13, previously implicated in nuclear envelope protein mutations leading to skeletal muscular dystrophies. Conclusions Mutant TMEM43 exhibits normal cellular localization and does not disrupt integrity and localization of other nuclear envelope and desmosomal proteins. The pathogenetic role of TMEM43 mutations in ARVC remains uncertain.</p