478 research outputs found

    The Transition from Proliferation to Differentiation Is Delayed in Satellite Cells from Mice Lacking MyoD

    Get PDF
    AbstractSatellite cells from adult rat muscle coexpress proliferating cell nuclear antigen and MyoD upon entry into the cell cycle, suggesting that MyoD plays a role during the recruitment of satellite cells. Moreover, the finding that muscle regeneration is compromised in MyoDβˆ’/βˆ’ mice, has provided evidence for the role of MyoD during myogenesis in adult muscle. In order to gain further insight into the role of MyoD during myogenesis in the adult, we compared satellite cells from MyoDβˆ’/βˆ’ and wildtype mice as they progress through myogenesis in single-myofiber cultures and in tissue-dissociated cell cultures (primary cultures). Satellite cells undergoing proliferation and differentiation were traced immunohistochemically using antibodies against various regulatory proteins. In addition, an antibody against the mitogen-activated protein kinases ERK1 and ERK2 was used to localize the cytoplasm of the fiber-associated satellite cells regardless of their ability to express specific myogenic regulatory factor proteins. We show that during the initial days in culture the myofibers isolated from both the MyoDβˆ’/βˆ’ and the wildtype mice contain the same number of proliferating, ERK+ satellite cells. However, the MyoDβˆ’/βˆ’ satellite cells continue to proliferate and only a very small number of cells transit into the myogenin+ state, whereas the wildtype cells exit the proliferative compartment and enter the myogenin+ stage. Analyzing tissue-dissociated cultures of MyoDβˆ’/βˆ’ satellite cells, we identified numerous cells whose nuclei were positive for the Myf5 protein. In contrast, quantification of Myf5+ cells in the wildtype cultures was difficult due to the low level of Myf5 protein present. The Myf5+ cells in the MyoDβˆ’/βˆ’ cultures were often positive for desmin, similar to the MyoD+ cells in the wildtype cultures. Myogenin+ cells were identified in the MyoDβˆ’/βˆ’ primary cultures, but their appearance was delayed compared to the wildtype cells. These β€œdelayed” myogenin+ cells can express other differentiation markers such as MEF2A and cyclin D3 and fuse into myotubes. Taken together, our studies suggest that the presence of MyoD is critical for the normal progression of satellite cells into the myogenin+, differentiative state. It is further proposed that the Myf5+/MyoDβˆ’ phenotype may represent the myogenic stem cell compartment which is capable of maintaining the myogenic precursor pool in the adult muscle

    Neutrinos From Individual Gamma-Ray Bursts in the BATSE Catalog

    Get PDF
    We calculate the neutrino emission from individual gamma-ray bursts observed by the BATSE detector on the Compton Gamma-Ray Observatory. Neutrinos are produced by photoproduction of pions when protons interact with photons in the region where the kinetic energy of the relativistic fireball is dissipated allowing the acceleration of electrons and protons. We also consider models where neutrinos are predominantly produced on the radiation surrounding the newly formed black hole. From the observed redshift and photon flux of each individual burst, we compute the neutrino flux in a variety of models based on the assumption that equal kinetic energy is dissipated into electrons and protons. Where not measured, the redshift is estimated by other methods. Unlike previous calculations of the universal diffuse neutrino flux produced by all gamma-ray bursts, the individual fluxes (compiled at http://www.arcetri.astro.it/~dafne/grb/) can be directly compared with coincident observations by the AMANDA telescope at the South Pole. Because of its large statistics, our predictions are likely to be representative for future observations with larger neutrino telescopes.Comment: 49 pages, 7 figures. Accepted for publication in Astroparticle Physic

    Absence of CD34 on Murine Skeletal Muscle Satellite Cells Marks a Reversible State of Activation during Acute Injury

    Get PDF
    Background: Skeletal muscle satellite cells are myogenic progenitors that reside on myofiber surface beneath the basal lamina. In recent years satellite cells have been identified and isolated based on their expression of CD34, a sialomucin surface receptor traditionally used as a marker of hematopoietic stem cells. Interestingly, a minority of satellite cells lacking CD34 has been described. Methodology/Principal Findings: In order to elucidate the relationship between CD34+ and CD34- satellite cells we utilized fluorescence-activated cell sorting (FACS) to isolate each population for molecular analysis, culture and transplantation studies. Here we show that unless used in combination with a7 integrin, CD34 alone is inadequate for purifying satellite cells. Furthermore, the absence of CD34 marks a reversible state of activation dependent on muscle injury. Conclusions/Significance: Following acute injury CD34- cells become the major myogenic population whereas the percentage of CD34+ cells remains constant. In turn activated CD34- cells can reverse their activation to maintain the pool of CD34+ reserve cells. Such activation switching and maintenance of reserve pool suggests the satellite cell compartment is tightly regulated during muscle regeneration

    LRP5 Is Required for Vascular Development in Deeper Layers of the Retina

    Get PDF
    Background: The low-density lipoprotein receptor-related protein 5 (LRP5) plays an important role in the development of retinal vasculature. LRP5 loss-of-function mutations cause incomplete development of retinal vessel network in humans as well as in mice. To understand the underlying mechanism for how LRP5 mutations lead to retinal vascular abnormalities, we have determined the retinal cell types that express LRP5 and investigated specific molecular and cellular functions that may be regulated by LRP5 signaling in the retina. Methods and Findings: We characterized the development of retinal vasculature in LRP5 mutant mice using specific retinal cell makers and a GFP transgene expressed in retinal endothelial cells. Our data revealed that retinal vascular endothelial cells predominantly formed cell clusters in the inner-plexiform layer of LRP5 mutant retina rather than sprouting out or migrating into deeper layers to form normal vascular network in the retina. The IRES-b-galactosidase (LacZ) report gene under the control of the endogenous LRP5 promoter was highly expressed in MΓΌller cells and was also weakly detected in endothelial cells of the retinal surface vasculature. Moreover, the LRP5 mutant mice had a reduction of a MΓΌller cell-specific glutamine transporter, Slc38a5, and showed a decrease in b-wave amplitude of electroretinogram. Conclusions: LRP5 is not only essential for vascular endothelial cells to sprout, migrate and/or anastomose in the deeper plexus during retinal vasculature development but is also important for the functions of MΓΌller cells and retina

    Determinants of elevated healthcare utilization in patients with COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) imparts a substantial economic burden on western health systems. Our objective was to analyze the determinants of elevated healthcare utilization among patients with COPD in a single-payer health system.</p> <p>Methods</p> <p>Three-hundred eighty-nine adults with COPD were matched 1:3 to controls by age, gender and area of residency. Total healthcare cost 5 years prior recruitment and presence of comorbidities were obtained from a computerized database. Health related quality of life (HRQoL) indices were obtained using validated questionnaires among a subsample of 177 patients.</p> <p>Results</p> <p>Healthcare utilization was 3.4-fold higher among COPD patients compared with controls (p < 0.001). The "most-costly" upper 25% of COPD patients (n = 98) consumed 63% of all costs. Multivariate analysis revealed that independent determinants of being in the "most costly" group were (OR; 95% CI): age-adjusted Charlson Comorbidity Index (1.09; 1.01 - 1.2), history of: myocardial infarct (2.87; 1.5 - 5.5), congestive heart failure (3.52; 1.9 - 6.4), mild liver disease (3.83; 1.3 - 11.2) and diabetes (2.02; 1.1 - 3.6). Bivariate analysis revealed that cost increased as HRQoL declined and severity of airflow obstruction increased but these were not independent determinants in a multivariate analysis.</p> <p>Conclusion</p> <p>Comorbidity burden determines elevated utilization for COPD patients. Decision makers should prioritize scarce health care resources to a better care management of the "most costly" patients.</p

    Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mast cells contribute to tissue repair in fibrous tissues by stimulating proliferation of fibroblasts through the release of tryptase which activates protease-activated receptor-2 (PAR-2). The possibility that a tryptase/PAR-2 signaling pathway exists in skeletal muscle cell has never been investigated. The aim of this study was to evaluate whether tryptase can stimulate myoblast proliferation and determine the downstream cascade.</p> <p>Methods</p> <p>Proliferation of L6 rat skeletal myoblasts stimulated with PAR-2 agonists (tryptase, trypsin and SLIGKV) was assessed. The specificity of the tryptase effect was evaluated with a specific inhibitor, APC-366. Western blot analyses were used to evaluate the expression and functionality of PAR-2 receptor and to assess the expression of COX-2. COX-2 activity was evaluated with a commercial activity assay kit and by measurement of PGF<sub>2</sub>Ξ± production. Proliferation assays were also performed in presence of different prostaglandins (PGs).</p> <p>Results</p> <p>Tryptase increased L6 myoblast proliferation by 35% above control group and this effect was completely inhibited by APC-366. We confirmed the expression of PAR-2 receptor <it>in vivo </it>in skeletal muscle cells and in satellite cells and <it>in vitro </it>in L6 cells, where PAR-2 was found to be functional. Trypsin and SLIGKV increased L6 cells proliferation by 76% and 26% above control, respectively. COX-2 activity was increased following stimulation with PAR-2 agonist but its expression remained unchanged. Inhibition of COX-2 activity by NS-398 abolished the stimulation of cell proliferation induced by tryptase and trypsin. Finally, 15-deoxy-Ξ”-<sup>12,14</sup>-prostaglandin J<sub>2 </sub>(15Ξ”-PGJ<sub>2</sub>), a product of COX-2-derived prostaglandin D<sub>2</sub>, stimulated myoblast proliferation, but not PGE<sub>2 </sub>and PGF<sub>2</sub>Ξ±.</p> <p>Conclusions</p> <p>Taken together, our data show that tryptase can stimulate myoblast proliferation and this effect is part of a signaling cascade dependent on PAR-2 activation and on the downstream activation of COX-2.</p

    Reduced Satellite Cell Numbers and Myogenic Capacity in Aging Can Be Alleviated by Endurance Exercise

    Get PDF
    Background: Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface. Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary. Methodology: Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., exvivo). The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays (in-vitro). We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in bot

    An Autotetraploid Linkage Map of Rose (Rosa hybrida) Validated Using the Strawberry (Fragaria vesca) Genome Sequence

    Get PDF
    Polyploidy is a pivotal process in plant evolution as it increase gene redundancy and morphological intricacy but due to the complexity of polysomic inheritance we have only few genetic maps of autopolyploid organisms. A robust mapping framework is particularly important in polyploid crop species, rose included (2nβ€Š=β€Š4xβ€Š=β€Š28), where the objective is to study multiallelic interactions that control traits of value for plant breeding. From a cross between the garden, peach red and fragrant cultivar Fragrant Cloud (FC) and a cut-rose yellow cultivar Golden Gate (GG), we generated an autotetraploid GGFC mapping population consisting of 132 individuals. For the map we used 128 sequence-based markers, 141 AFLP, 86 SSR and three morphological markers. Seven linkage groups were resolved for FC (Total 632 cM) and GG (616 cM) which were validated by markers that segregated in both parents as well as the diploid integrated consensus map
    • …
    corecore