4,892 research outputs found

    Some comments on quasi-birth-and-death processes and matrix measures

    Get PDF
    In this paper we explore the relation between matrix measures and Quasi-Birth-and-Death processes. We derive an integral representation of the transition function in terms of a matrix valued spectral measure and corresponding orthogonal matrix polynomials. We characterize several stochastic properties of Quasi-Birth-and-Death processes by means of this matrix measure and illustrate the theoretical results by several examples. --Block tridiagonal infinitesimal generator,Quasi-Birth-and-Death processes,spectral measure,matrix measure,canonical moments

    Finite-temperature phase diagram of the Heisenberg-Kitaev model

    Full text link
    We discuss the finite-temperature phase diagram of the Heisenberg-Kitaev model on the hexagonal lattice, which has been suggested to describe the spin-orbital exchange of the effective spin-1/2 momenta in the Mott insulating Iridate Na2IrO3. At zero-temperature this model exhibits magnetically ordered states well beyond the isotropic Heisenberg limit as well as an extended gapless spin liquid phase around the highly anisotropic Kitaev limit. Using a pseudofermion functional renormalization group (RG) approach, we extract both the Curie-Weiss scale and the critical ordering scale (for the magnetically ordered states) from the RG flow of the magnetic susceptibility. The Curie-Weiss scale switches sign -- indicating a transition of the dominant exchange from antiferromagnetic to ferromagnetic -- deep in the magnetically ordered regime. For the latter we find no significant frustration, i.e. a substantial suppression of the ordering scale with regard to the Curie-Weiss scale. We discuss our results in light of recent experimental susceptibility measurements for Na2IrO3.Comment: 4+e pages, 5 figure

    Hydrodynamic interactions in polar liquid crystals on evolving surfaces

    Full text link
    We consider the derivation and numerical solution of the flow of passive and active polar liquid crystals, whose molecular orientation is subjected to a tangential anchoring on an evolving curved surface. The underlying passive model is a simplified surface Ericksen-Leslie model, which is derived as a thin-film limit of the corresponding three-dimensional equations with appropriate boundary conditions. A finite element discretization is considered and the effect of hydrodynamics on the interplay of topology, geometric properties and defect dynamics is studied for this model on various stationary and evolving surfaces. Additionally, we consider an active model. We propose a surface formulation for an active polar viscous gel and exemplarily demonstrate the effect of the underlying curvature on the location of topological defects on a torus

    Functional renormalization group for the anisotropic triangular antiferromagnet

    Full text link
    We present a functional renormalization group scheme that allows us to calculate frustrated magnetic systems of arbitrary lattice geometry beyond O(200) sites from first principles. We study the magnetic susceptibility of the antiferromagnetic (AFM) spin-1/2 Heisenberg model ground state on the spatially anisotropic triangular lattice, where J' denotes the coupling strength of the intrachain bonds along one lattice direction and J the coupling strength of the interchain bonds. We identify three distinct phases of the Heisenberg model. Increasing xi=J'/J from the effective square lattice xi=0, we find an AFM Neel order to spiral order transition at xi_{c1} = 0.6-0.7, with indication to be of second order. In addition, above the isotropic point at xi_{c2} = 1.1, we find a first order transition to a magnetically disordered phase with collinear AFM stripe fluctuations.Comment: 4+e pages, 4 figures; 2 pages of supplementary material added (2 figures

    Three-band Hubbard model for Na2_2IrO3_3: Topological insulator, zigzag antiferromagnet, and Kitaev-Heisenberg material

    Get PDF
    Na2_2IrO3_3 was one of the first materials proposed to feature the Kane-Mele type topological insulator phase. Contemporaneously it was claimed that the very same material is in a Mott insulating phase which is described by the Kitaev-Heisenberg (KH) model. First experiments indeed revealed Mott insulating behavior in conjunction with antiferromagnetic long-range order. Further refined experiments established antiferromagnetic order of zigzag type which is not captured by the KH model. Since then several extensions and modifications of the KH model were proposed in order to describe the experimental findings. Here we suggest that adding charge fluctuations to the KH model represents an alternative explanation of zigzag antiferromagnetism. Moreover, a phenomenological three-band Hubbard model unifies all the pieces of the puzzle: topological insulator physics for weak and KH model for strong electron-electron interactions as well as a zigzag antiferromagnet at intermediate interaction strength.Comment: 5 pages, 3 figures; v2 (as published): added discussion about kinetic energy scale C; more realistic values of C shift the zigzag AFM phase to larger values of

    New Aspects of Thromboangiitis obliterans (von Winiwarter-Buerger's Disease)

    Get PDF
    The existence of thromboangiitis obliterans as a clinical entity has been a matter of debate for many years. In contrast to other immunovasculitides there is no organ involvement while peripheral vessels are affected. Heavy smokers under 40 years of age have a high predisposition for the disease. The cerebral form shows relapsing brain infarctions which can be visualized in CCT while panarteriography remains negative. Apart from unspecific inflammatory signs in blood and CSF there are distinctive laboratory findings proving the autoimmunological character of von Winiwarter-Buerger's disease. In the serum anti-elastin antibodies, IgE and anticollagen antibody activity are detectable. In 3 patients the authors detected specific immunohistochemical findings in a biopsy specimen of the temporal artery. In addition to platelet-inhibiting substances corticoids in acute and azathioprine in chronic treatment becomes necessary

    Solving the incompressible surface Navier-Stokes equation by surface finite elements

    Full text link
    We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g(S)g(\mathcal{S}). The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3\mathbb{R}^3, penalization of the normal component, a Chorin projection method and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus (DEC) simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincar\'e-Hopf theorem on nn-tori

    Quantum spin liquids in frustrated spin-1 diamond antiferromagnets

    Get PDF
    Motivated by the recent synthesis of the spin-1 A-site spinel NiRh2_{\text 2}O4_{\text 4}, we investigate the classical to quantum crossover of a frustrated J1J_1-J2J_2 Heisenberg model on the diamond lattice upon varying the spin length SS. Applying a recently developed pseudospin functional renormalization group (pf-FRG) approach for arbitrary spin-SS magnets, we find that systems with S3/2S \geq 3/2 reside in the classical regime where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments SS=1 or SS=1/2 we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh2_{\text 2}O4_{\text 4}, a modified J1J_1-J2J_2^--J2J_2^\perp exchange model is found to favor a conventionally ordered N\'eel state (for arbitrary spin SS) even in the presence of a strong local single-ion spin anisotropy and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.Comment: 11 pages, 14 figure
    corecore